Difference between revisions of "Os07g0186200"

From RiceWiki
Jump to: navigation, search
Line 50: Line 50:
  
 
===Evolution===
 
===Evolution===
 +
[[File: LP2 phylogenetic01.jpg|left|thumb|220px|'''Figure 2.''' ''Protein domain structure and phylogenetic analysis of LP2.(from reference <ref name="ref4"/>).'']]
 +
 
*Two paralogues, [[Os06g0203800| ''OsRLK1'' (Os06g0203800)]] and [[Os02g0777400|''OsRLK2''(Os02g0777400)]], were found in the rice genome. These homology with ''Arabidopsis'' '''RLKs''' AtER (63%), AtERL1 (70%) and AtERL2 (70%). In the kinase domain, the identities were 72, 84 and 82%, respectively. ''OsSIK1'' has high similarity with '''ER family''' proteins from ''Arabidopsis'', especially in the kinase domain. The three (ER) RLKs together control stomatal patterning, with specific family members regulating the specification of stomatal stem cell fate and the differentiation of guard cells in ''Arabidopsis''<ref name="ref3"/>.
 
*Two paralogues, [[Os06g0203800| ''OsRLK1'' (Os06g0203800)]] and [[Os02g0777400|''OsRLK2''(Os02g0777400)]], were found in the rice genome. These homology with ''Arabidopsis'' '''RLKs''' AtER (63%), AtERL1 (70%) and AtERL2 (70%). In the kinase domain, the identities were 72, 84 and 82%, respectively. ''OsSIK1'' has high similarity with '''ER family''' proteins from ''Arabidopsis'', especially in the kinase domain. The three (ER) RLKs together control stomatal patterning, with specific family members regulating the specification of stomatal stem cell fate and the differentiation of guard cells in ''Arabidopsis''<ref name="ref3"/>.
  
[[File: LP2 phylogenetic01.jpg|right|thumb|220px|'''Figure 2.''' ''Protein domain structure and phylogenetic analysis of LP2.(from reference <ref name="ref4"/>).'']]
 
 
*But [[Os06g0130100|''OsSIK1'']] and ''OsSIK2'' share only 30.56% and 18.04% amino acid identities with '''LP2''', respectively<ref name="ref4"/>.
 
*But [[Os06g0130100|''OsSIK1'']] and ''OsSIK2'' share only 30.56% and 18.04% amino acid identities with '''LP2''', respectively<ref name="ref4"/>.
 +
 
*[[Os06g0130100|''OsSIK1'']]<ref name="ref3"/>, ''OsSIK2'' and [[Os02g0615800|''LP2'']] proteins all belong to the '''LRR-RLK gene family''', ''LP2'' does not share significant primary sequence homology with ''OsSIK1'' and ''OsSIK2''. Phylogenetic analysis revealed that the three proteins are in different subgroups(Figure 2)<ref name="ref4"/>.
 
*[[Os06g0130100|''OsSIK1'']]<ref name="ref3"/>, ''OsSIK2'' and [[Os02g0615800|''LP2'']] proteins all belong to the '''LRR-RLK gene family''', ''LP2'' does not share significant primary sequence homology with ''OsSIK1'' and ''OsSIK2''. Phylogenetic analysis revealed that the three proteins are in different subgroups(Figure 2)<ref name="ref4"/>.
  
 
===Knowledge Extension===
 
===Knowledge Extension===
 +
[[File: RLKs Overview1.jpg|right|thumb|310px|'''Figure 3.''' ''Overview of plant receptor-like kinases (RLKs) and their functions.(from reference <ref name="ref9"/>).'']]
 +
 
*'''RLK''' comprises one of the largest families, with more than 610 and '''1,131''' members in Arabidopsis (''Arabidopsis thaliana'') and '''rice''' (''Oryza sativa''), respectively. Intracellular kinase domains are relatively conserved with Ser/Thr kinase activity to transduce signals. Based on the identity of extracellular domains, RLKs are classified into 44 subfamilies. The biggest subfamily is leucine-rich repeats (LRRs), and the other subfamilies include S-domains, Domain of Unknown Function26, CELL WALL-ASSOCIATED KINASE-like, and others<ref name="ref5"/>.
 
*'''RLK''' comprises one of the largest families, with more than 610 and '''1,131''' members in Arabidopsis (''Arabidopsis thaliana'') and '''rice''' (''Oryza sativa''), respectively. Intracellular kinase domains are relatively conserved with Ser/Thr kinase activity to transduce signals. Based on the identity of extracellular domains, RLKs are classified into 44 subfamilies. The biggest subfamily is leucine-rich repeats (LRRs), and the other subfamilies include S-domains, Domain of Unknown Function26, CELL WALL-ASSOCIATED KINASE-like, and others<ref name="ref5"/>.
  
 
*Receptor-like kinases ('''RLKs''') play essential roles in plant growth, development and responses to environmental stresses. Most RLKs have kinase activity using Mn<sup>2+</sup> as a co-factor<ref name="ref6"/><ref name="ref7"/><ref name="ref8"/>. Similarly, ''OsSIK1'' has kinase activity in the presence of Mn<sup>2+</sup>. RLKs may have activity in the presence of other ions. Phosphorylation with various ions may indicate thatdifferent RLKs can function under unfavorable conditions or in response to different stresses.
 
*Receptor-like kinases ('''RLKs''') play essential roles in plant growth, development and responses to environmental stresses. Most RLKs have kinase activity using Mn<sup>2+</sup> as a co-factor<ref name="ref6"/><ref name="ref7"/><ref name="ref8"/>. Similarly, ''OsSIK1'' has kinase activity in the presence of Mn<sup>2+</sup>. RLKs may have activity in the presence of other ions. Phosphorylation with various ions may indicate thatdifferent RLKs can function under unfavorable conditions or in response to different stresses.
[[File: RLKs Overview1.jpg|left|thumb|310px|'''Figure 3.''' ''Overview of plant receptor-like kinases (RLKs) and their functions.(from reference <ref name="ref9"/>).'']]
+
 
 
*The membrane-localized RLKs have been shown to control diverse signalling events (Fig. 3)<ref name="ref9"/>, and these RLKs constitute the largest gene family in various plant genomes, with >600 members in Arabidopsis and 1100 members in rice, and are classified based on their extracellular structures. The RLKs regulate the homeostatic mechanisms underlying abiotic and biotic stress responses and have a major role in integrating environmental and plant hormone signallings.In addition, RLKs have been known to have a major role in integrating environmental and plant hormone signalling<ref name="ref5"/><ref name="ref9"/><ref name="ref10"/>(Fig. 3).
 
*The membrane-localized RLKs have been shown to control diverse signalling events (Fig. 3)<ref name="ref9"/>, and these RLKs constitute the largest gene family in various plant genomes, with >600 members in Arabidopsis and 1100 members in rice, and are classified based on their extracellular structures. The RLKs regulate the homeostatic mechanisms underlying abiotic and biotic stress responses and have a major role in integrating environmental and plant hormone signallings.In addition, RLKs have been known to have a major role in integrating environmental and plant hormone signalling<ref name="ref5"/><ref name="ref9"/><ref name="ref10"/>(Fig. 3).
  

Revision as of 08:54, 15 April 2015

As an S-domain receptor-like kinase from rice (Oryza sativa), OsSIK2(Oryza sativa stress-induced protein kinase gene 2) is involved in abiotic stress and the senescence process[1].

Annotated Information

Function

Figure 1. OsSIK2 gene expression and Schematic representation.(from reference [1]).
  • The downstream PR-related genes specifically up-regulated by full-length OsSIK2 or the DREB-like genes solely enhanced by truncated OsSIK2 are all induced by salt, drought, and dark treatments, Which indicating that OsSIK2 may integrate stress signals into a developmental program for better adaptive growth under unfavorable conditions. Manipulation of OsSIK2 should facilitate the improvement of production in rice and other crops. OsSIK2 is a Mn2+-dependent protein kinase[1].
  • OsSIK2 was an intronless gene and encoded a protein of 833 amino acids. OsSIK2 was predicted to be an S-domain RLK (Fig. 1A)that was less studied in terms of stress response. The extracellular region of OsSIK2 contains a putative signal peptide at the N-terminal portion linked with three modules (B_lectin, S-LOCUS GLYCOPROTEIN, and PAN domains). A transmembrane domain was also identified,

followed by an intracellular Ser/Thr kinase domain[1] (Fig. 1A).

GO assignment(s): GO:0004672, GO:0004674, GO:0005524, GO:0005529,GO:0006468

Mutation

gene, mutant and overexpression lines[1]:

  • OsSIK2-f: OsSIK2 full-length gene
  • OsSIK2-t: OsSIK2 truncated gene
  • sik2:

an OsSIK2 knockout mutant (ND5850) with Transposon of Oryza sativa17 (Tos17) insertion

  • OsSIK2-t overexpression lines:
    • OX-72
    • OX-74
  • OsSIK2-f overexpression lines:
    • OX-15
    • OX-17
  • Transgenic plants overexpressing OsSIK2 and mutant sik2 exhibit enhanced and reduced tolerance to salt and drought stress, respectively, compared with the controls.
  • Moreover, seedlings of OsSIK2-overexpressing transgenic plants exhibit early leaf development and a delayed dark-induced senescence phenotype, while mutant sik2 shows the opposite phenotype.
  • OsSIK2-t may have a greater ability to confer tolerance than OsSIK2-f. OsSIK2 confers tolerance to salt stress under field conditions and that the truncated version OsSIK2-t plays a stronger role than the full-length version OsSIK2-f in stress tolerance. OsSIK2 is efficient in eliminating H2O2 produced under salt stress.
  • After dark treatment, the OsSIK2 transgenic plants were greener, whereas the sik2 mutant was more yellow, than the corresponding controls.


Expression

  • OsSIK2 gene expression[1]:
    • Figure 1B shows that OsSIK2 was apparently induced by treatments with NaCl (200 mM), polyethylene glycol (PEG;20%), cold (4°C), and ABA (100 mM), with expression peaks at 1 to 3 h after initiation of the experiments. Thereafter, the expression was gradually reduced.
    • OsSIK2 was also expressed in various parts of rice plants, with relatively higher levels in leaf and sheath compared with the levels in stem, root, and panicles (Fig. 1C).
    • To investigate whether OsSIK2 is a functional protein kinase, the kinase domain of OsSIK2 with a maltose-binding protein (MBP) tag was expressed, purified, confirmed by western-blot analysis using anti-MBP monoclonal antibody (Fig. 1D), and further subjected to autophosphorylation assay. As shown in Figure 1D, when the OsSIK2 kinase-MBP fusion protein was incubated with ATP in the presence of Mn2+, 32P was strongly incorporated into the fusion protein.
  • The expression of the peroxidase gene POX-1 and POX-2 was up-regulated in OsSIK2 transgenic plants but down-regulated in the sik2 mutant compared with the corresponding controls under normal conditions, suggesting that OsSIK2 increases rice salt tolerance at least partially by the activation of POX-1 and POX-2 expression[1].
  • OsSIK2-t activates the expression of OsDREB1B and OsDREB1E contributes to salt tolerance and dwarfism in transgenic plants. Additionally, OsSIK2-t transgenic plants show apparently delayed senescence under field conditions. The DEHYDRATION-RESPONSIVE ELEMENTBINDING PROTEIN (DREB) genes OsDREB1B and OsDREB1E and thesenescence-associated dehydrogenase gene and dioxygenase gene[2] were exclusively up-regulated in OsSIK2-t plants but reduced in the sik2 mutant compared with the corresponding controls[1].

Taken together, OsSIK2 is expressed mainly in rice leaf and sheath and can be induced by NaCl, drought, cold, dark, and abscisic acid treatment. Transgenic Rice Plants Overexpressing OsSIK2 Exhibit dwarfism and early leaf emergence at the seedling stage. Overexpression of OsSIK2 improves salt and drought tolerance in transgenic rice seedlings[1].

Subcellular localization

Subcellular localization of the OsSIK2 was tested in Arabidopsis protoplasts. OsSIK2-f was exclusively localized in the plasma membrane, whereas OsSIK2-t was localized in both the membrane and cytoplasm, suggesting that the signal peptide and extracellular parts affect the normal localization of OsSIK2. GFP was used as a control and expressed in cytoplasm. In a word, OsSIK2 is a plasma membrane-localized protein with kinase activity in the presence of Mn2+[1].

Evolution

Figure 2. Protein domain structure and phylogenetic analysis of LP2.(from reference [3]).
  • Two paralogues, OsRLK1 (Os06g0203800) and OsRLK2(Os02g0777400), were found in the rice genome. These homology with Arabidopsis RLKs AtER (63%), AtERL1 (70%) and AtERL2 (70%). In the kinase domain, the identities were 72, 84 and 82%, respectively. OsSIK1 has high similarity with ER family proteins from Arabidopsis, especially in the kinase domain. The three (ER) RLKs together control stomatal patterning, with specific family members regulating the specification of stomatal stem cell fate and the differentiation of guard cells in Arabidopsis[4].
  • But OsSIK1 and OsSIK2 share only 30.56% and 18.04% amino acid identities with LP2, respectively[3].
  • OsSIK1[4], OsSIK2 and LP2 proteins all belong to the LRR-RLK gene family, LP2 does not share significant primary sequence homology with OsSIK1 and OsSIK2. Phylogenetic analysis revealed that the three proteins are in different subgroups(Figure 2)[3].

Knowledge Extension

Figure 3. Overview of plant receptor-like kinases (RLKs) and their functions.(from reference [5]).
  • RLK comprises one of the largest families, with more than 610 and 1,131 members in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa), respectively. Intracellular kinase domains are relatively conserved with Ser/Thr kinase activity to transduce signals. Based on the identity of extracellular domains, RLKs are classified into 44 subfamilies. The biggest subfamily is leucine-rich repeats (LRRs), and the other subfamilies include S-domains, Domain of Unknown Function26, CELL WALL-ASSOCIATED KINASE-like, and others[6].
  • Receptor-like kinases (RLKs) play essential roles in plant growth, development and responses to environmental stresses. Most RLKs have kinase activity using Mn2+ as a co-factor[7][8][9]. Similarly, OsSIK1 has kinase activity in the presence of Mn2+. RLKs may have activity in the presence of other ions. Phosphorylation with various ions may indicate thatdifferent RLKs can function under unfavorable conditions or in response to different stresses.
  • The membrane-localized RLKs have been shown to control diverse signalling events (Fig. 3)[5], and these RLKs constitute the largest gene family in various plant genomes, with >600 members in Arabidopsis and 1100 members in rice, and are classified based on their extracellular structures. The RLKs regulate the homeostatic mechanisms underlying abiotic and biotic stress responses and have a major role in integrating environmental and plant hormone signallings.In addition, RLKs have been known to have a major role in integrating environmental and plant hormone signalling[6][5][10](Fig. 3).
  • ROS, partially reduced or activated derivatives of oxygen, are highly reactive and toxic, and can damage DNA, proteins and carbohydrates, resulting in cell death[11]. ROS also cause lipid peroxidation, cell membrane damage and MDA production. ROS production can increase under abiotic stresses[12][13][14].

Labs working on this gene

  • State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
  • National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
  • National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, PR China

References

  1. 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 Chen L J, Wuriyanghan H, Zhang Y Q, et al. An S-Domain Receptor-Like Kinase, OsSIK2, Confers Abiotic Stress Tolerance and Delays Dark-Induced Leaf Senescence in Rice[J]. Plant physiology, 2013, 163(4): 1752-1765.
  2. Lee I C, Hong S W, Whang S S, et al. Age-dependent action of an ABA-inducible receptor kinase, RPK1, as a positive regulator of senescence in Arabidopsis leaves[J]. Plant and cell physiology, 2011, 52(4): 651-662.
  3. 3.0 3.1 3.2 Wu F, Sheng P, Tan J, et al. Plasma membrane receptor-like kinase leaf panicle 2 acts downstream of the DROUGHT AND SALT TOLERANCE transcription factor to regulate drought sensitivity in rice[J]. Journal of experimental botany, 2014: eru417.
  4. 4.0 4.1 Ouyang S Q, Liu Y F, Liu P, et al. Receptor‐like kinase OsSIK1 improves drought and salt stress tolerance in rice (Oryza sativa) plants[J]. The Plant Journal, 2010, 62(2): 316-329.
  5. 5.0 5.1 5.2 Osakabe Y, Yamaguchi-Shinozaki K, Shinozaki K, et al. Sensing the environment: key roles of membrane-localized kinases in plant perception and response to abiotic stress[J]. Journal of experimental botany, 2013, 64(2): 445-458
  6. 6.0 6.1 Shiu S H, Bleecker A B. Plant receptor-like kinase gene family: diversity, function, and signaling[J]. Science Signaling, 2001, 2001(113): re22.
  7. Schulze-Muth P, Irmler S, Schröder G, et al. Novel Type of Receptor-like Protein Kinase from a Higher Plant (Catharanthus roseus) cDNA, GENE, INTRAMOLECULAR AUTOPHOSPHORYLATION, AND IDENTIFICATION OF A THREONINE IMPORTANT FOR AUTO-AND SUBSTRATE PHOSPHORYLATION[J]. Journal of Biological Chemistry, 1996, 271(43): 26684-26689.
  8. Liu G Z, Pi L Y, Walker J C, et al. Biochemical characterization of the kinase domain of the rice disease resistance receptor-like kinase XA21[J]. Journal of Biological Chemistry, 2002, 277(23): 20264-20269.
  9. He X J, Zhang Z G, Yan D Q, et al. A salt-responsive receptor-like kinase gene regulated by the ethylene signaling pathway encodes a plasma membrane serine/threonine kinase[J]. Theoretical and applied genetics, 2004, 109(2): 377-383.
  10. Diévart A, Clark S E. LRR-containing receptors regulating plant development and defense[J]. Development, 2004, 131(2): 251-261.
  11. Mittler R, Vanderauwera S, Gollery M, et al. Reactive oxygen gene network of plants[J]. Trends in plant science, 2004, 9(10): 490-498.
  12. Zhu J K. Plant salt tolerance[J]. Trends in plant science, 2001, 6(2): 66-71.
  13. Mittler R. Oxidative stress, antioxidants and stress tolerance[J]. Trends in plant science, 2002, 7(9): 405-410.
  14. Xiong L, Schumaker K S, Zhu J K. Cell signaling during cold, drought, and salt stress[J]. The Plant Cell Online, 2002, 14(suppl 1): S165-S183.

Structured Information

Gene Name

Os07g0186200

Description

Curculin-like (mannose-binding) lectin domain containing protein

Version

NM_001065605.2 GI:297606835 GeneID:4342594

Length

2514 bp

Definition

Oryza sativa Japonica Group Os07g0186200, complete gene.

Source

Oryza sativa Japonica Group

 ORGANISM  Oryza sativa Japonica Group
           Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;
           Spermatophyta; Magnoliophyta; Liliopsida; Poales; Poaceae; BEP
           clade; Ehrhartoideae; Oryzeae; Oryza.
Chromosome

Chromosome 7

Location

Chromosome 7:4625246..4627759

Sequence Coding Region

4625246..4627759

Expression

GEO Profiles:Os07g0186200

Genome Context

<gbrowseImage1> name=NC_008400:4625246..4627759 source=RiceChromosome07 preset=GeneLocation </gbrowseImage1>

Gene Structure

<gbrowseImage2> name=NC_008400:4625246..4627759 source=RiceChromosome07 preset=GeneLocation </gbrowseImage2>

Coding Sequence

<cdnaseq>atgccacctcctctctatgtcttgctactactcagtgggcttctcctctcctccctgcacactcctccatgttccgccgccattgcagatggcgacactctcatggtaggccaagcgctttctgtcggcgagaagctcgtctcgaggaacggcaagttcgcgctcggcttcttccagccacaaccaactgcaggcatcagtaagtccattaacaccaccaccaacacattgcctggctggtatcttggcatatggttcaacaagatccaggtttttactacagcttgggttgctaatagggagaatcccatcactggccctgagctgaagcaagcacagctcaaaatctcaagagatggcaatcttgccatcgtcttgaacaacaacaacaccagttcagagtccataatctggtccagcactcacaccattgtcaataggacaacaggatcatccagcacaaacaccagtgctctcctcatgaacaatggaaacctactcctcatggctagtagcaatgttgtgttgtggcagagcttcgactaccctgcagatgttgggcttccgggtgctaagttaggtaggaacaagatcaccggtttgaaccgtcggttcgttgccaagaagagcctcattgatatgggcctcggctcttacatccttgagatggacacaaacacggtgttgcgccttaggcgtcgcaaacctcccgtcgtggtgtattggtcttggtcatccggacaattggcgtatacgcttgtaccattgctcaatgagctgctagacatggatccacggaccaaaggcttgctcaaacctgcatatgtccacaacaatgaggaggagtacttcacgtacacctcccttgatgaatcggcttctgtattcgtttccatagacatcactggtcaggttaagctgaatgtttggtcacaacccaaaatgtcttggcaaaccatatatgcagaaccatctgatccatgcagcctgcacgatgtctgtggacctttcacggtctgcaatggcaattcagtcccattctgtggatgtatggagagcttctctcccaagtcaccgcaggattgggatgccggtgatccgattggagggtgcatcagagatactcccttagattgtgcatctggtaaacaaaacaacacaagttcaacagacatgttccaccccatagctcctgttacactgcccttgtaccctcaaagcatggaagatgcttcgacccagagcgattgcgaagaagcttgtcttcatgactgcgcttgcactgcttatacctataatggtaacagatgctctatctggcatggggaattgcgaagtgtgaatcagaatgatggcattgataatcattctgaaaatgttctttaccttcgcctcgccgccagagattcacaaagtttaaggaagaacaacaaacggagaccaagagttgttgccattgtaagcattgtcgttagttttggattactaatgctcatgcttttgttaacgatttggattaacaaatccaagtggtgtggtgtgccattatatggcagtcaaggtaatgatggtggaattatagcctttagatacaccggtttagttcgtgctactaaatgtttctcagagaagctaggaggaggtggttttggttctgtattcaagggaatgttgggagaccagactgctatagcagtgaaaaggcttgatggtgctcgtcagggagagaagcaattcagggcagaagtgagctcaattggaatgacccaacatatcaacctaatcaaactgattggtttctgctgcgaaggtgataagaggctacttgtgtatgaacgcatgttaaatgggtctcttgacgcccatctatttcagagcaatgctaccgttctaaattggagcaccaggtatcaaatagctataggagttgctagaggattgtgctacctgcaccagagttgtcgcgaatgcatcatacactgtgatattaaaccagaaaacatacttctgaatgaatcatttgttcctaagattgcagattttgggatggcagcgattgtaggaagggattttagccgagttctaactacattcagaggtactgtagggtatcttgccccagagtggcttagcggagttgctattacaccaaaagttgatgtttacagctttggcatggtactattggaaatcatatcaggaaggagaaattcacctaaagtatctgctagcaacagctatcatggtgcttattttcctgtgcgagcaattaacaagcttcatgtgggagatgtgcatagtttgatggatccacgattacatgacgacttcagtttggaagaggctgaaagagtttgcaaagttgcatgttggtgcatccaagaaattgagtctgatcggccgacaatgggtgaagtggtccgggccattgagggtctacatgagcttgatatgcccccgatgccaagactacttgcagctataatagaacactctgatgtggcttcaatataa</cdnaseq>

Protein Sequence

<aaseq>MPPPLYVLLLLSGLLLSSLHTPPCSAAIADGDTLMVGQALSVGE KLVSRNGKFALGFFQPQPTAGISKSINTTTNTLPGWYLGIWFNKIQVFTTAWVANREN PITGPELKQAQLKISRDGNLAIVLNNNNTSSESIIWSSTHTIVNRTTGSSSTNTSALL MNNGNLLLMASSNVVLWQSFDYPADVGLPGAKLGRNKITGLNRRFVAKKSLIDMGLGS YILEMDTNTVLRLRRRKPPVVVYWSWSSGQLAYTLVPLLNELLDMDPRTKGLLKPAYV HNNEEEYFTYTSLDESASVFVSIDITGQVKLNVWSQPKMSWQTIYAEPSDPCSLHDVC GPFTVCNGNSVPFCGCMESFSPKSPQDWDAGDPIGGCIRDTPLDCASGKQNNTSSTDM FHPIAPVTLPLYPQSMEDASTQSDCEEACLHDCACTAYTYNGNRCSIWHGELRSVNQN DGIDNHSENVLYLRLAARDSQSLRKNNKRRPRVVAIVSIVVSFGLLMLMLLLTIWINK SKWCGVPLYGSQGNDGGIIAFRYTGLVRATKCFSEKLGGGGFGSVFKGMLGDQTAIAV KRLDGARQGEKQFRAEVSSIGMTQHINLIKLIGFCCEGDKRLLVYERMLNGSLDAHLF QSNATVLNWSTRYQIAIGVARGLCYLHQSCRECIIHCDIKPENILLNESFVPKIADFG MAAIVGRDFSRVLTTFRGTVGYLAPEWLSGVAITPKVDVYSFGMVLLEIISGRRNSPK VSASNSYHGAYFPVRAINKLHVGDVHSLMDPRLHDDFSLEEAERVCKVACWCIQEIES DRPTMGEVVRAIEGLHELDMPPMPRLLAAIIEHSDVASI</aaseq>

Gene Sequence

<dnaseqindica>1..2514#atgccacctcctctctatgtcttgctactactcagtgggcttctcctctcctccctgcacactcctccatgttccgccgccattgcagatggcgacactctcatggtaggccaagcgctttctgtcggcgagaagctcgtctcgaggaacggcaagttcgcgctcggcttcttccagccacaaccaactgcaggcatcagtaagtccattaacaccaccaccaacacattgcctggctggtatcttggcatatggttcaacaagatccaggtttttactacagcttgggttgctaatagggagaatcccatcactggccctgagctgaagcaagcacagctcaaaatctcaagagatggcaatcttgccatcgtcttgaacaacaacaacaccagttcagagtccataatctggtccagcactcacaccattgtcaataggacaacaggatcatccagcacaaacaccagtgctctcctcatgaacaatggaaacctactcctcatggctagtagcaatgttgtgttgtggcagagcttcgactaccctgcagatgttgggcttccgggtgctaagttaggtaggaacaagatcaccggtttgaaccgtcggttcgttgccaagaagagcctcattgatatgggcctcggctcttacatccttgagatggacacaaacacggtgttgcgccttaggcgtcgcaaacctcccgtcgtggtgtattggtcttggtcatccggacaattggcgtatacgcttgtaccattgctcaatgagctgctagacatggatccacggaccaaaggcttgctcaaacctgcatatgtccacaacaatgaggaggagtacttcacgtacacctcccttgatgaatcggcttctgtattcgtttccatagacatcactggtcaggttaagctgaatgtttggtcacaacccaaaatgtcttggcaaaccatatatgcagaaccatctgatccatgcagcctgcacgatgtctgtggacctttcacggtctgcaatggcaattcagtcccattctgtggatgtatggagagcttctctcccaagtcaccgcaggattgggatgccggtgatccgattggagggtgcatcagagatactcccttagattgtgcatctggtaaacaaaacaacacaagttcaacagacatgttccaccccatagctcctgttacactgcccttgtaccctcaaagcatggaagatgcttcgacccagagcgattgcgaagaagcttgtcttcatgactgcgcttgcactgcttatacctataatggtaacagatgctctatctggcatggggaattgcgaagtgtgaatcagaatgatggcattgataatcattctgaaaatgttctttaccttcgcctcgccgccagagattcacaaagtttaaggaagaacaacaaacggagaccaagagttgttgccattgtaagcattgtcgttagttttggattactaatgctcatgcttttgttaacgatttggattaacaaatccaagtggtgtggtgtgccattatatggcagtcaaggtaatgatggtggaattatagcctttagatacaccggtttagttcgtgctactaaatgtttctcagagaagctaggaggaggtggttttggttctgtattcaagggaatgttgggagaccagactgctatagcagtgaaaaggcttgatggtgctcgtcagggagagaagcaattcagggcagaagtgagctcaattggaatgacccaacatatcaacctaatcaaactgattggtttctgctgcgaaggtgataagaggctacttgtgtatgaacgcatgttaaatgggtctcttgacgcccatctatttcagagcaatgctaccgttctaaattggagcaccaggtatcaaatagctataggagttgctagaggattgtgctacctgcaccagagttgtcgcgaatgcatcatacactgtgatattaaaccagaaaacatacttctgaatgaatcatttgttcctaagattgcagattttgggatggcagcgattgtaggaagggattttagccgagttctaactacattcagaggtactgtagggtatcttgccccagagtggcttagcggagttgctattacaccaaaagttgatgtttacagctttggcatggtactattggaaatcatatcaggaaggagaaattcacctaaagtatctgctagcaacagctatcatggtgcttattttcctgtgcgagcaattaacaagcttcatgtgggagatgtgcatagtttgatggatccacgattacatgacgacttcagtttggaagaggctgaaagagtttgcaaagttgcatgttggtgcatccaagaaattgagtctgatcggccgacaatgggtgaagtggtccgggccattgagggtctacatgagcttgatatgcccccgatgccaagactacttgcagctataatagaacactctgatgtggcttcaatataa</dnaseqindica>

External Link(s)

NCBI Gene:Os07g0186200, RefSeq:Os07g0186200