Os06g0662200

From RiceWiki
Revision as of 06:51, 5 March 2015 by Zhangye (talk | contribs)
Jump to: navigation, search

OsbZIP52/RISBZ5 is a member of the basic leucine zipper (bZIP) transcription factor (TF) family in rice isolated from rice (Zhonghua11) panicles.

Annotated Information

Function

  • A transactivation assay in yeast demonstrated that OsbZIP52 functions as a transcriptional activator and can specifically bind to the G-box promoter motif. In a yeast two-hybrid (Y-2-H) experiment, OsbZIP52 was able to form homodimeric complexes[1].
  • OsbZIP52 might bind the cis-acting G-box elements in the promoters of down-stream genes. OsbZIP52/RISBZ5 could function as a negative regulator in cold and drought stress environments[1].


GO assignment(s): GO:0005634,GO:0043565, GO:0046983

Mutation

transgenic rice and WT[1]:

  • Realtime PCR analysis revealed that some abiotic stress-related genes, such as OsLEA3, OsTPP1, Rab25, gp1 precursor, β-gal, LOC_Os05g11910 and LOC_Os05g39250, were down-regulated in OsbZIP52 overexpression lines.
  • Seed germination in the transgenic rice and WT was similar on plates with or without ABA. There were no significant differences between the WT and transgenic rice for shoot length, root length and root number when they were grown in nutrient solution with or without ABA. Thus, OsbZIP52 was not sensitive to ABA.

Expression

  • OsbZIP52 was constitutively expressed in almost all the tissues and organs examined, including the shoots, roots, stems, Xag leaves, Xowers and seeds, and the expression in Xowers and seeds was higher than in the other tissues[1].
  • Expression of the OsbZIP52 gene was strongly induced by low temperature (4°C) but not by drought, PEG, salt, or ABA. OsbZIP52 had weak transactivation activity, which required a full-length CDS region[1].
  • Overexpression of OsbZIP52 results in sensitivity to drought and cold stress. Rice plants overexpressing OsbZIP52 showed significantly increased sensitivity to cold and drought stress. Overexpression of OsbZIP52 led to down-regulation of stress-related genes[1].

Subcellular localization

  • The subcellular localization of OsbZIP52-GFP in onion epidermis cells revealed that OsbZIP52 is a nuclear localized protein[1].

Evolution

Figure 1. phylogenetic relationships among plant Group C bZIP members.(from reference [1]).
  • NCBI BLASTp results also showed that OsbZIP52 was similar to maize O2 and O2-like TFs from other plants. Further classification using MEGA4.0 with the known classified bZIP TFs[2][3]. OsbZIP52 belongs to Group C of the bZIP family (Fig. 1)[1].
  • The Group C bZIP TFs play important roles in diverse biologic processes, such as seed maturity, Xower development, light signal transduction, and stress response. Amino acid sequence alignment demonstrated high similarity to AtbZIP9/BZO2H2, OsbZIP15/RISBZ4, OsbZIP20/RISBZ3/RITA-1 and AtbZIP10[1].

Knowledge Extension

Figure 2.Summary of ABA signaling pathways that result in drought stress resistant responses.(from reference [4]).
  • The ability of rice to germinate under anoxia by extending the coleoptile is a highly unusual characteristic and a key feature underpinning the ability of rice seeds to establish in such a stressful environment. The process has been a focal point for research for many years. However, the molecular mechanisms underlying the anoxic growth of coleoptile still remain largely unknown[4].
  • Combined with recent findings on ABA signal transduction in Arabidopsis (Fig. 2), investigation into the genetic regulation of core ABA signal transduction components could promote the introduction of drought tolerance responses into various crop species. Since the identification of PYR/PYL/RCARs, a better understanding of signaling networks among the canonical ABA signaling components has shed light on the genetic modification of ABA signal transduction for improving drought tolerance in plants[4].
  • Major targets for this purpose include PYR/PYL/RCARs-PP2CSnRK2s complexes as well as their phosphorylation substrates such as transcription factors or channel proteins. A PP2C binds to a SnRK2 in the absence of ABA and mediate dephosphorylation of the SnRK2 (Fig. 2). On the other hand, activation of SnRK2s as a critical positive signal for ABA signaling usually begins with autophosphorylation of SnRK2s[4].
  • Unlike other cereal species, rice is able to germinate and elongate under anoxia. The regulatory mechanism that configures the transcriptome of rice during anaerobic germination is yet to be established. Although some rice varieties exhibit some degree of tolerance to anaerobic stress that normally occurs during partial (hypoxia) or complete submergence (anoxia), it remains a major factor that limits productivity specially for the rainfed lowland cropping systems in Southeast Asia, where an average family relies on subsistence rice farming[5][6][7].
  • OsbZIP71 is a member of anoxia stressed up-regulated transcription factors with potential significance to the pattern of cis-element enrichment among the upregulated genes[5][8].

Labs working on this gene

  • Key Laboratory of Gene Engineering Drug and Biotechnology, Key Laboratory of Cell Proliferation and Regulation of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, People’s Republic of China
  • National Center for Molecular Crop Design, Weiming Kaituo Agriculture Biotech Co., Ltd, Beijing 100085, People’s Republic of China

References

  1. 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 Liu C, Wu Y, Wang X. bZIP transcription factor OsbZIP52/RISBZ5: a potential negative regulator of cold and drought stress response in rice[J]. Planta, 2012, 235(6): 1157-1169.
  2. Corrêa L G G, Riaño-Pachón D M, Schrago C G, et al. The role of bZIP transcription factors in green plant evolution: adaptive features emerging from four founder genes[J]. PLoS One, 2008, 3(8): e2944.
  3. Nijhawan A, Jain M, Tyagi A K, et al. Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice[J]. Plant Physiology, 2008, 146(2): 333-350.
  4. 4.0 4.1 4.2 4.3 Kim T H. Mechanism of ABA signal transduction: Agricultural highlights for improving drought tolerance[J]. Journal of Plant Biology, 2014, 57(1): 1-8.
  5. 5.0 5.1 Mohanty B, Herath V, Wijaya E, et al. Patterns of cis-element enrichment reveal potential regulatory modules involved in the transcriptional regulation of anoxia response of japonica rice[J]. Gene, 2012, 511(2): 235-242.
  6. JACKSON M B, RAM P C. Physiological and molecular basis of susceptibility and tolerance of rice plants to complete submergence[J]. Annals of Botany, 2003, 91(2): 227-241.
  7. Xu K, Xu X, Fukao T, et al. Sub1A encodes an ethylene responsive-like factor that confers submergence tolerance to rice[J]. Nature, 2006, 442: 705-708.
  8. Lakshmanan M, Mohanty B, Lim S H, et al. Metabolic and transcriptional regulatory mechanisms underlying the anoxic adaptation of rice coleoptile[J]. AoB Plants, 2014: plu026.

Structured Information

Gene Name

Os06g0662200

Description

Eukaryotic transcription factor, DNA-binding domain containing protein

Version

NM_001064816.1 GI:115469363 GeneID:4341753

Length

2173 bp

Definition

Oryza sativa Japonica Group Os06g0662200, complete gene.

Source

Oryza sativa Japonica Group

 ORGANISM  Oryza sativa Japonica Group
           Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;
           Spermatophyta; Magnoliophyta; Liliopsida; Poales; Poaceae; BEP
           clade; Ehrhartoideae; Oryzeae; Oryza.
Chromosome

Chromosome 6

Location

Chromosome 6:28176935..28179107

Sequence Coding Region

28177633..28177899,28178154..28178279,28178363..28178438,28178530..28178665,28178810..28179092

Expression

GEO Profiles:Os06g0662200

Genome Context

<gbrowseImage1> name=NC_008399:28176935..28179107 source=RiceChromosome06 preset=GeneLocation </gbrowseImage1>

Gene Structure

<gbrowseImage2> name=NC_008399:28176935..28179107 source=RiceChromosome06 preset=GeneLocation </gbrowseImage2>

Coding Sequence

<cdnaseq>atgatgaagaagtgcccgtcggagctgcagctggaggcgttcatccgggaggaggccggcgccggcgaccgcaagcccggcgtgttatctcccggcgacggcgcgcgtaagtccggcctgttctctcccggcgacggcgagatgtccgtgttggatcagagtacactggacggaagcggcggcggccaccagctgtggtggccggagagcgtccgtacgccgccgcgcgccgccgccgccttctcggccacggccgacgagcggacgccggcgtccatctccgatgaccccaaaccaaccacctcagcgaaccacgcgcctgaaagcgactcggactccgattgcgattcgctgttagaagcagagaggagtccacgcctgcgtggcacgaaatccacagaaacaaagcgaataagaaggatggtgtccaacagggagtccgctcgacgatccaggaggagaaagcaggcacagttatctgaactcgaatcacaggtcgagcaactcaaaggcgaaaactcatccctcttcaagcagctcacagagtccagccagcagttcaatacagcggtcacggacaacaggatcctcaaatcggatgtagaggccttaagagtcaaggtcaagatggctgaagacatggtcgcgagggccgcgatgtcgtgtggcctgggccagctcgggctggcgccattgctcagctccaggaagatgtgccaagctttggatatgctcagtttaccacggaacgatgcctgtggtttcaaaggcttgaacctgggtcgacaggttcagaactcaccggttcaaagcgctgcaagcctagagagcctggacaaccggatatccagcgaggtgaccagctgctcggctgatgtgtggccttaa</cdnaseq>

Protein Sequence

<aaseq>MMKKCPSELQLEAFIREEAGAGDRKPGVLSPGDGARKSGLFSPG DGEMSVLDQSTLDGSGGGHQLWWPESVRTPPRAAAAFSATADERTPASISDDPKPTTS ANHAPESDSDSDCDSLLEAERSPRLRGTKSTETKRIRRMVSNRESARRSRRRKQAQLS ELESQVEQLKGENSSLFKQLTESSQQFNTAVTDNRILKSDVEALRVKVKMAEDMVARA AMSCGLGQLGLAPLLSSRKMCQALDMLSLPRNDACGFKGLNLGRQVQNSPVQSAASLE SLDNRISSEVTSCSADVWP</aaseq>

Gene Sequence

<dnaseqindica>1209..1475#829..954#670..745#443..578#16..298#ggtcggaggaaggcgatgatgaagaagtgcccgtcggagctgcagctggaggcgttcatccgggaggaggccggcgccggcgaccgcaagcccggcgtgttatctcccggcgacggcgcgcgtaagtccggcctgttctctcccggcgacggcgagatgtccgtgttggatcagagtacactggacggaagcggcggcggccaccagctgtggtggccggagagcgtccgtacgccgccgcgcgccgccgccgccttctcggccacggccgacgagcggacgccggcgtccatctccggtaggtacacatgacataatttgagtttttttgagttacagagctattgtgcaaacagcccattttctatgcgtttatttggagttatgaaacacacccaaatttagtcaaattcatcacatgttgggttcattttggttgcagatgaccccaaaccaaccacctcagcgaaccacgcgcctgaaagcgactcggactccgattgcgattcgctgttagaagcagagaggagtccacgcctgcgtggcacgaaatccacagaaacaaagcgaataagaaggtacatagtgatcgatcaatcttgatttctagcaaatgcaacaaatttgaacagagaacgcattcttatgaactgcttgttcgaatttcaggatggtgtccaacagggagtccgctcgacgatccaggaggagaaagcaggcacagttatctgaactcgaatcacaggtattataaacttcaaagttcaaatttccagatgcgttgatgcaaatatcagtgtgatcttacagcaatccatctatgatcaggtcgagcaactcaaaggcgaaaactcatccctcttcaagcagctcacagagtccagccagcagttcaatacagcggtcacggacaacaggatcctcaaatcggatgtagaggccttaagagtcaaggtaattagaaaccaaactctccttcagccaccaattatcggcgcatttaacttttcgccacttttaagatgaggtaattaagaatttaccacccatagtctatgacaacatatgggtctttatcactttatgtgtctatgacatgtgagtccaattgcaaattgtcactcgtaagagtggtaaatagttaattgtttctgatgatcggcttccggcatctctccaaacttaccaattcttggcttcgatcccaggtcaagatggctgaagacatggtcgcgagggccgcgatgtcgtgtggcctgggccagctcgggctggcgccattgctcagctccaggaagatgtgccaagctttggatatgctcagtttaccacggaacgatgcctgtggtttcaaaggcttgaacctgggtcgacaggttcagaactcaccggttcaaagcgctgcaagcctagagagcctggacaaccggatatccagcgaggtgaccagctgctcggctgatgtgtggccttaagacacttcatccgtgttcgagagagcttgagattctaagaagcagccggtgagaatctgaaaaggctagttgttcagtttcctatttttagtttatgtttgaattctctggctactaatgctcaaaatctgggagagaatctaaatcgtttgggacagataaaaaattatgcgagaaggtgtagctgacagaaaccttcccaaacaaatctccatcagaacctatatgtaaagtaatacggtatcctctgttactaggtgcatgtgcataactgacaagctgctaagtactaggtactacagtctgaggcaagtatttctggtgttttggtgctgaagaactatgttttagtgcgtttgatctgcggcaatcaaggccatctgatcgaaatttgattggtataaatctgatcgaaatttgattggtataagtataatagtttgattttgatcacctctagtcgtcagcgcctttggtgtatacgctctgtaacatctgttacgaattgatctgttcagtatacttcaacagtcctgcattggttcagttcttggcgtagctctggtgcttctggtgcgcatagcatcggtgtgaaatgtgccacttttcatggcagttgtaatagtaaacgactgcaaaattacggtgtactataattcctaaacaaatatgtgacaattacgatgaaaattatcact</dnaseqindica>

External Link(s)

NCBI Gene:Os06g0662200, RefSeq:Os06g0662200