Os10g0404500

From RiceWiki
Jump to: navigation, search

Please input one-sentence summary here.

Sucrose Transporter Gene

Function

Plant sucrose transporters (SUTs) regulate the active transport of sucrose across plasma membrane barriers in a process that is coupled to proton symport. Since sucrose is the major carbohydrate translocated through the phloem in most plant species, the sucrose/H+ symporters are thought to play important roles in mediating carbon partitioning in plants, for example apoplastic phloem loading in leaves, transport of sucrose into and/or out of temporary storage sinks such as stem tissue and post-phloem transport of sucrose into sink tissue such as seeds.

The rice has five families of sucrose transporters. Despite of the previously reported OsSUT1, four putative sucrose transporter are known as OsSUT2, 3, 4 and 5. OsSUT1 encodes a functional SUT protein that is essential for transport of assimilate into filling rice grains. It has also been proposed that OsSUT1 is involved in transport of assimilate remobilised from starch reserves in leaf sheaths and in germinating seeds. Expression of OsSUT3, 4 and 5 in sink rice leaf suggests that they may be important for supplying sucrose, as a carbon source for growing tissues or possibly to supply sucrose to temporary storage tissues.Unlike the other four OsSUT genes, OsSUT2 seems to be expressed at almost equal levels in various tissues of rice plants.

The five families of sucrose transporters involve in the rice resistance to intermittent drought and secondary soil salinity.

OsSUT1 is the major salt responsive gene of the family of 5 OsSUT-genes,The function of the rice OsSUT1-gene in carbon partitioning, specifically for grain filling and seed germination and early seedling growth.OsSUT1 plays in the transport of assimilate along the entire long-distance pathway, from the flag leaf blade to the base of the filling grain.

OsSUT2 is involved in Suc transport across the tonoplast from the vacuole lumen to the cytosol in rice, playing an essential role in sugar export from the source leaves to sink organs.

Expression

The five families all contained a region that is highly conserved in known functional plant SUT genes, including OsSUT1. This domain includes the first membrane spanning helix, the following extracellular loop, the second membrane spanning helix and the next cytoplasmic loop have shown, by site-directed mutagenesis of the Arabidopsis AtSUC1 protein, that a conserved histidine residue in the extracellular loop is responsible for sucrose binding in the transport process. This histidine residue was also found to be present in all of the putative OsSUT peptides(reference [1] ). .

" The functionally important and conserved histidine residue is shown in bold. Dots indicate non-conserved amino acids, and horizontal bars indicate gaps in the sequence alignments(from reference [2]).. "


OsSUT1 mRNA accumulated to high levels in germinating seeds, source leaf sheaths and panicles, but to very low level in roots. OsSUT2 mRNA accumulated to nearly equal levels in all tissues tested. The expression patterns of OsSUT3 and 5 were found to be similar, the expression level is at its highest in sink leaves and the lowest in germinating seeds. OsSUT4 showed preferential expression in sink leaves(reference [3] and reference [4]).

" Analysis of expression of the five OsSUT genes, by semi-quantitative RT-PCR. For each gene, transcript levels in different tissue samples are comparable(from reference [2]).. "

The gene expression are different when the plants encounter such environmental obstacles, although the five families involved in the sucrose transporters and sucrose transport, they expressed differently in different tissues.OsSUT1 expression appeared to be non-essential for vegetative growth. Performance of OsSUT1 anti-sense lines in response to increasing salt concentrations. Expression of OsSUT2-green fluorescent protein in rice revealed that OsSUT2 localizes to the tonoplast. Analysis of the OsSUT2 promoter::β-glucuronidase transgenic rice indicated that this gene is highly expressed in leaf mesophyll cells, emerging lateral roots, pedicels of fertilized spikelets, and cross cell layers of seed coats. Results of Suc transport assays in yeast were consistent with a H+-Suc symport mechanism, suggesting that OsSUT2 functions in Suc uptake from the vacuole.The ossut2 mutant exhibited a growth retardation phenotype with a significant reduction in tiller number, plant height, 1,000-grain weight, and root dry weight compared with the controls, the wild type, and complemented transgenic lines. Analysis of primary carbon metabolites revealed that ossut2 accumulated more Suc, glucose, and fructose in the leaves than the controls. Further sugar export analysis of detached leaves indicated that ossut2 had a significantly decreased sugar export ability compared with the controls.

Evolution

We can express the OsSUT gene in yeast to test whether it's functional. Choose the yeast strain which is unable to hydrolyse exogenous sucrose but if transformed with a functional SUT, can import sucrose and hydrolyse it internally , allowing it to grow on media containing sucrose as the sole carbon source.

" Test function in yeast(from reference [2]).. "

There is also a novel fluorescent assay for sucrose transporter activity based on the ability of type I SUTs to transport the highly fluorescent molecule esculin (6,7-dihydroxycoumarin β-D-glucoside). Using fluorescence microscopy, we can do the research conveniently.

" Esculin uptake by yeast cells expressing StSUT1 was detected using FACS.(from reference [5]).. "

Labs working on this gene

  • Univ Minnesota, Dept Plant Biol, Biol Sci Ctr 250, 1445 Gortner Ave, St Paul, MN 55108 USA.
  • CSIRO Plant Ind, Canberra, ACT 2601, Australia.
  • Chinese Acad Sci, Inst Genet & Dev Biol, Natl Key Lab Plant Genom, Beijing 100101, Peoples R China
  • Natl Agr Res Ctr, Dept Rice Res, Niigata 9430193, Japan
  • National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences,Peoples R China
  • Department of Rice Research, National Agricultural Research Center, Joetsu, Niigata, 943-0193 Japan

References

<references> [1] [2] [3] [4] [5]


Structured Information

Gene Name

Os10g0404500

Description

Sucrose transporter

Version

NM_001071090.1 GI:115481923 GeneID:4348577

Length

6221 bp

Definition

Oryza sativa Japonica Group Os10g0404500, complete gene.

Source

Oryza sativa Japonica Group

 ORGANISM  Oryza sativa Japonica Group
           Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;
           Spermatophyta; Magnoliophyta; Liliopsida; Poales; Poaceae; BEP
           clade; Ehrhartoideae; Oryzeae; Oryza.
Chromosome

Chromosome 10

Location

Chromosome 10:14136198..14142418

Sequence Coding Region

14136282..14136437,14138096..14138161,14138312..14138410,14139725..14139789,14139915..14139999
,14140094..14140127,14140244..14140343,14140516..14140591,14140790..14141113
,14141795..14142310

Expression

GEO Profiles:Os10g0404500

Genome Context

<gbrowseImage1> name=NC_008403:14136198..14142418 source=RiceChromosome10 preset=GeneLocation </gbrowseImage1>

Gene Structure

<gbrowseImage2> name=NC_008403:14136198..14142418 source=RiceChromosome10 preset=GeneLocation </gbrowseImage2>

Coding Sequence

<cdnaseq>atggccgtcgacatggagctcgacggcggtggcgacggcaagggcaaagccccgccgcagataagcctgtcggggctattccttgcgtgcatggtcgccggtggcgtgcagtacggctgggcgctgcagctctctctcctcaccccgtacgttcagacattgggaattcctcatgcactcacttcagttatgtggctctgtggccctattgctggcttaattgttcagccatgcgtcggcctgtacagtgacaagtgcacatccagccttggaagacgtagaccgttcatcctcactggatgcataatcatctgcatatctgtgatcgtcatcgggttctcctcggacatcggctacgctctcggcgacacgactgaggactgcaaggtttacaggggtcctcgttaccatgcagcggcggcattcatcctcggattctggctgctcgacttctccaacaacaccgtgcagggtccagctcgcgctctgatggccgatttgtcaggtcggcatggcccaagcgcggccaacgcgatcttctgttcttggatggcattaggcaacatccttggctactcctccggatccaccaatgactggcacaagtggtttccctttctcatgaccagggcttgctgcgaggcctgcgcgaatctcaaagcggccttcttggttgcagtggtgtttttggggttgtcgacggcggtgacgatggtgtttgcgagggaggtggcgctggacccagtggcggcggcgaagcggaacgagggtgaggcgtcggggctcctcgccgtgttcaaggggatgaagaacctccccgtcgggatgccgtcggtgcttatcgtcaccggcctcacctggctctcgtggttccccttcatcctcttcgacaccgactggatgggccgcgagatctaccatggccgcccggacggctcccccgccgaggtcaccgccttccaagagggtgtccgccaaggcgccttcggcctcctccttaactcgatcgtgctgggcatcagctcgttcctgatcgagccgatgtgccgtcggctgggcgcccgcgcggtgtgggtgatgagcagcgccgtcgtgtgcgtcgccatggcggccgtctccgtgctcagcgcgtggtcgctcggcgacttcggcggctcggtgcaggacgcagcgcgggcgccggcggaggagggcggcgtcagggcgtcggcgctggcgctcttcgtcttcctcggcctccccttcgccgtcctctgcagcgtcccgttcgccgtcacggcgcagctcgcggcgagccgcggcggcgggcagggcctctgcaccggcgtcctcaacatctccatcgtcgtgccgcagatggccatcgccctcggcgccgggccctgggacgagctgttcggggaggggaacatcccggcgttcgccatggcgtccgtgttcgccgccgcggccgccgccgccggcgtcgtcttgctgcccaaggtctccgtccgctccgtcagcatggccggcggccactga</cdnaseq>

Protein Sequence

<aaseq>MAVDMELDGGGDGKGKAPPQISLSGLFLACMVAGGVQYGWALQL SLLTPYVQTLGIPHALTSVMWLCGPIAGLIVQPCVGLYSDKCTSSLGRRRPFILTGCI IICISVIVIGFSSDIGYALGDTTEDCKVYRGPRYHAAAAFILGFWLLDFSNNTVQGPA RALMADLSGRHGPSAANAIFCSWMALGNILGYSSGSTNDWHKWFPFLMTRACCEACAN LKAAFLVAVVFLGLSTAVTMVFAREVALDPVAAAKRNEGEASGLLAVFKGMKNLPVGM PSVLIVTGLTWLSWFPFILFDTDWMGREIYHGRPDGSPAEVTAFQEGVRQGAFGLLLN SIVLGISSFLIEPMCRRLGARAVWVMSSAVVCVAMAAVSVLSAWSLGDFGGSVQDAAR APAEEGGVRASALALFVFLGLPFAVLCSVPFAVTAQLAASRGGGQGLCTGVLNISIVV PQMAIALGAGPWDELFGEGNIPAFAMASVFAAAAAAAGVVLLPKVSVRSVSMAGGH</aaseq>

Gene Sequence

<dnaseqindica>85..240#1899..1964#2115..2213#3528..3592#3718..3802#3897..3930#4047..4146#4319..4394#4593..4916#5598..6113#cttcgatctcttgggatataactagcttagctatagctctagctaaataggttcgtacgtataggatatttgatccattgatcgatggccgtcgacatggagctcgacggcggtggcgacggcaagggcaaagccccgccgcagataagcctgtcggggctattccttgcgtgcatggtcgccggtggcgtgcagtacggctgggcgctgcagctctctctcctcaccccgtacgttcaggtatgtgtttaaggcgttttggcctttttcattttcgtctatattcattagcatctatatgaatttgaacacacacacacacacacatatatatatatatatatatatatatatatatatatatatatatatatggattcacgtatgaatctattcaaaacccaaactgtcttaactaataatatggaacagagaacatagtactacttagttgttgtgattgtatatatgtactatacttttcttgtctccaagagggagatttttttttctattgtcttttaactctttattgatgtgaaggtgtaatttgtttgtgtggaaatatttggaggaattccaaatagtattgggaatatcagatttcctcttatgctgcctgtttgctatggctaatcttgatctaactcccacctcaaaaaaaaaacatgtagcttaacatctagctttcatattagcatcctcccaattaagctggttttagctatagcctattttatggtgtttttactcattatgttcctttggaaagcaacaatataattgttttcctcattcttgtagagttgaattaattcctgtgaaaatctgaaaaaaattgtgtgtacaattccagcatttctaaacaaaagcttgaacatttgctaatatacagttttcaaaagaaaaattttggaactggatttcacgattcatttttccaaggcacttgtcctgcaaaaagttctatagctgtaatatgggcaattccttgagtaataagtcatttatttcaccgcaagttcttgcgtagttgtggtgtaggtcagattgtttttatccatgaacttattacttctgtaaattaatttggtatatattgttaagttcagctatatcctggtaatagaaaatgaatgtttttattagtaaaagttttttttataaaatgaaatgaattcatttctatgtttaggagtaaagcattgtctagcacagcaagggactgtaactaaaaatggtatgtgagttgtttcatttttgttctaactgaaccatggcaccatataacaaagtattaatcttgaataaagtcaccagatgttattttttggtcaaaataaaaaggcattttccatatatttacaatcatactaccaaattaaaattatactccctccggtttttaatgtaccacgtcattaacttttagacatatgtttgaactttttgtgttattaaaaaaataatgcaaatacgtacatattatcaagattgcggtagattcagatcaattttcttgtgtggcttgttttggcctaggagtacacggactaaccaagttattgtatcaaaatgaacaacctacaagttgttgtatctatttgcacccaccacgcaagttcatgtaccatgagcacaatttactccttatattatctttaatataaaacaaatcaaaacaaaataaatatttattacataattcttttaataagacaaatgatcaaacatcgtccaaaagtcaacagcgtcgtacatgcatggaaaacctgagggagtacccttgttgtgctttgataaaatccagcatgaactaattactaatttctcttcatatatgtgcatggcttaattcattcactaacttcatttcactatcactttgtttggaacagacattgggaattcctcatgcactcacttcagttatgtggctctgtggccctattgctggcttaattgtaagtagtgccctatctatggcgatgtcatatatcattccctggtcttaaaaaaagaaaactcacaaaattatatcaagatttatgatttcagaaacatgatccctcaaagtacgttttctcctcacgtttgtgcctttcatcctgcaggttcagccatgcgtcggcctgtacagtgacaagtgcacatccagccttggaagacgtagaccgttcatcctcactggatgcataatcatctgcatatctgtgagaaaaacccaattatcatccaactactctcttcgtttcatattataaatcgtttaaacttttttttaagttaaacttgttttaaaaaattttgatcatcaaatgtatataaaaatatagtaatatttatagcaccaatttgcactacattcccagtgtcctgcaaccaaattgatagagagatattcgcggcagccacgaccatcaccctatgagatagaaagacggcgagtttctgcactcgcacaggcttgaaaacaagattcctaagacaatggcaccggccatctacgcatcttcaaggtgaaagaatcaaatagtttgcgaggccctctcctctaacactttgattcgtgacatctgactgctacaaatcacaacagtagatcacctaagtcagtatgtcgagctatggaccatgatccagagaataggccccttaggatactagagagacaccatcacttagaagtttacagcaaatggtgaatagtcggcaaaatcggcttatcagctacaattcctatgtgcagtaggaacggtgttcaatcaaacaatttggaaatgttaggcgcccctaaagtgcaaatttttcatatagttggtcatccaaaatagggtgtggacggctgataggctatagaagagaggttagcaaaaccaaagagtctgccccttctatagagtatcacaggaaacgacaatccatcttatcgcaaaatgcaggctctctataaggatttagacagccatacaacattgggcgagcatagacctcaaaatacaagattgggacgcttgcgcttcgatggaagaatggtggaagagggttcttcacacaccgcacatccccaaaggacctttaaaatccctgattatcctggtgggttgggagctctggtgtgagagaaacactaggatattccgccacgtggctaccaccctgacaaccatcatcgctaaaatcaaagaagaggggttggcctggatcaaagtgggatcaaagtgggagccgcaaaagctcgttgagttaacttcgttggaagaaccctatagtttctccttctgtgggctctttttttttatggcaggccctgtaaataactctttttttggttgtttgttttttctcctactctatcaatatatgcaaggtaaagctttcgtctttttttttaaaaaaaaagtgcactatatctaacaattcataaatttagttaaaactaaagtgacttaaaagttaaaaaaactaataatatgaaacggaggtaagtagttagttatttgattaactaattacatgactgacaggtgatcgtcatcgggttctcctcggacatcggctacgctctcggcgacacgactgaggactgcaagtaattaagctgctcgatcactgacagtgacagagcttgatgaattcgctgattaaatcattggtcgattagtaagcaaaatttcaggattcggactcgctaatcgagcgacttaatccatccagggtttacaggggtcctcgttaccatgcagcggcggcattcatcctcggattctggctgctcgacttctccaacaacaccgtgcaggtatgcagcctgaagaagaagaaagaaaactctcagctctgaatccatctgaaactctgaataatctgcaatgtgatatatgattctcgcgcagggtccagctcgcgctctgatggccgatttgtcaggtgagtcgtgagaagattaacaccagattttatacctgatttgatgacagattagttgtgttcttggttttggttttctgaattttgttgcttactgaacattggaatatattcaggtcggcatggcccaagcgcggccaacgcgatcttctgttcttggatggcattaggcaacatccttggctactcctccggatccaccaatgactggcacaagtcggtgatcgatcgctgatgactacagctgctctgaattttctcatcatcaaaatcatctatggaatgctaaatcagcagctttgatcagttcttgatgccaatttttttttctaagaaaaatgaacggaatgctatattcatagtggaattgcattgcatgtggccgcaggtggtttccctttctcatgaccagggcttgctgcgaggcctgcgcgaatctcaaagcggccttcttggttgcagtggtaattattttatttaattaaaagctgcagcttttatacaactatagtaccttcaaaattgaaggtttttacgtgacatgtatttttttctattacacgaaagacgatgcgtaatgcatcatggaacacacattcaagacaagaccagcgacaaaatctctaaaattactaaatttgattttgatgtaatgtgcgcaggtgtttttggggttgtcgacggcggtgacgatggtgtttgcgagggaggtggcgctggacccagtggcggcggcgaagcggaacgagggtgaggcgtcggggctcctcgccgtgttcaaggggatgaagaacctccccgtcgggatgccgtcggtgcttatcgtcaccggcctcacctggctctcgtggttccccttcatcctcttcgacaccgactggatgggccgcgagatctaccatggccgcccggacggctcccccgccgaggtcaccgccttccaagagggtgtccgccaaggcgccttcggcctcctccttaactcggtcagatcgagctatccatcaattacttgcctttttttctctccggtttaaaatatttgatgttaagaataatatttaaattattttttaaaaaataaaattgacctaaaacctaaagttttgaattgtgatagtgttaatacttttcgaggcaaatatgcacataaaagttttctttttctacttttttaactaacaatttgaaaaatgatttaactgtcaagttttcaaaatcctgatcaaatcttttccctgaacgtctattattttcttttacggagactgtatctactagctacttcattccacgttataataataagacgttatgatatcaccgttactcgtatagattcactatctttcatatgaatctaaacacatatataatacacacgaattaatctatacgttaatctttactacttaaaacaatgaagatgtttcttcgtccatccaaataaaaaaaaagcaaaaaaaaacataaaatgaaaggggaggcaaataaaaaaccggtgagccgaaaagaggtacaccgagcagagtgaaggaatgagtgtttggtccaaaaccaaggaaatacaatgtataggataaagctgttgtaacacacagtcattttttcattccattgaaaacactaaacgtcttgttgaactgacacgtcggcaatggccgcagatcgtgctgggcatcagctcgttcctgatcgagccgatgtgccgtcggctgggcgcccgcgcggtgtgggtgatgagcagcgccgtcgtgtgcgtcgccatggcggccgtctccgtgctcagcgcgtggtcgctcggcgacttcggcggctcggtgcaggacgcagcgcgggcgccggcggaggagggcggcgtcagggcgtcggcgctggcgctcttcgtcttcctcggcctccccttcgccgtcctctgcagcgtcccgttcgccgtcacggcgcagctcgcggcgagccgcggcggcgggcagggcctctgcaccggcgtcctcaacatctccatcgtcgtgccgcagatggccatcgccctcggcgccgggccctgggacgagctgttcggggaggggaacatcccggcgttcgccatggcgtccgtgttcgccgccgcggccgccgccgccggcgtcgtcttgctgcccaaggtctccgtccgctccgtcagcatggccggcggccactgatcactactagtctatcaccctttttttttccgtggttttaaatctcccgctatagctgctgctatctccagttagagcgggtactatagcaggctataagccagctgt</dnaseqindica>

External Link(s)

NCBI Gene:Os10g0404500, RefSeq:Os10g0404500

  1. 1.0 1.1 Lu J M-Y. and Bush D R.(1998) His-65 in the proton-sucrose symporter is an essential amino acid whose modification with site-directed mutagenesis increases transport activity. Proc Natl Acad 95: 9025–9030.
  2. 2.0 2.1 2.2 2.3 Aoki N, Hirose T, Scofield G N, et al.(2003)The Sucrose Transporter Gene Family in Rice. Plant and Cell Physiology 44:223-232.
  3. 3.0 3.1 Furbank R T, Scofield G N, Hirose T, et al. (2001) Cellular localisation and function of a sucrose transporter OsSUT1 in developing rice grains. Aust. J. Plant Physiol 28: 1187–1196.
  4. 4.0 4.1 Hirose T, Imaizumi N, Scofield G N, et al. (1997) cDNA cloning and tissue-specific expression of a gene for sucrose transporter from rice (Oryza sativa L.). Plant Cell Physiol 38: 1389–1396.
  5. 5.0 5.1 Gora P J, Reinders A, Ward J M, et al.(2012)A novel fluorescent assay for sucrose transporters. Plant Methods 8:13.