Os09g0307800

From RiceWiki
Jump to: navigation, search

Please input one-sentence summary here.

SDG724 is a class II SET domain protein and is constitutively expressed in various kinds of tissues.

Annotated Information

Function

  • SDG724 functions as a histone methyltransferase in vitro and contributes to a major fraction of globalhistone H3 lysine 36 (H3K36) methylation in vivo[1].
Figure 1. Map-Based Cloning of LVP1.[1]
  • Several plant SDGs have in vitro HMTase activities[2]. For instance, SDG714 in rice tends to choose core histones as preferred substrates , but ArabidopsisSDG8, SDG26, and SDG25 prefer to methylate oligonucleosomes[3] [4].
  • Histone Lys methylation in plants functions in biological processes such as flowering transition, floral organ development,carotenoid biosynthesis, shoot and root branching, pollen and macro-trichome development, and the brassinosteroid signaling pathway[5].
  • lesions in SDG724 were responsible for the late-flowering phenotype of lvp1 plants Heading date analyses showed that the flowering time defect was rescued in thetransgenic plant lines[1].
  • Long vegetative phase 1 (LVP1)/SDG724, is required for H3K36 methylation and promotes heading date in rice. The loss of function mutant lvp1 has a late flowering phenotype under both LD and SD conditions, associated with the suppressed expression of MADS50, MADS51, Ehd1, RFT1, and Hd3a. Furthermore, our results suggest a novel mechanism for the epigenetic regulation of flowering in rice, in which SDG724 mediates H3K36me2/3 deposition at the MADS50 and RFT1loci and promotes flowering through MADS50/MADS51-Ehd1-Hd3a/RFT1 pathways[6].

Expression

  • Expression analyses of flowering time genes in wild-type and lvp1 mutants revealed that Early heading date1, but not Heading date1, are misregulated in lvp1 mutants. In addition, the double mutant of lvp1 with photoperiod sensitivity5 (se5) flowered later than the se5 single mutant, indicating that lvp1 delays flowering time irrespective of photoperiod[1].
  • despite of their close chromosomal locations and high degree of similarity, SDG724 specifically affects H3K36me2/3 levels at the RFT1, but not the Hd3alocus. In addition, H3K36me2/3 levels at the Ehd1locus were also found to be unchanged in lvp1 plants, even though its expression was downregulated in lvp1 compared with wild-type plants (Figure 6). At all the loci examined, H3K4me3 levels were not significantly different be-tween lvp1 mutant and wild-type plants, which demonstrated aspecific relationship between SDG724 and H3K36 methylation.[1].
  • To provide further evidence that MADS50, Ehd1, Hd3a, and RFT1 were downstream targets of SDG724, we examined the expression levels of those genes at four developmental stages (30, 60, 90, and 120 d after germination [DAG]) in plants grown in Beijing under natural LD conditions. Leaf samples were collected 2 h after dawn, when transcription of the putative downstream genes was at a high level. The results showed that compared with the wild type, transcript levels of the downstream genes were lower in the lvp1 mutant and that transcript levels of the flowering time genes peaked at 60 DAG in wild-type plants These observations further supported the conclusion that under LD conditions, SDG724 activity promoted MADS50 transcription, which leads to upregulation of its downstream targets Ehd1 and FT-like genes. Also notably, MADS50 expression was only marginally changed in the controlled growth chamber under artificial LD conditions at 30 d but considerably changed under natural LD conditions at 60 DAG , when he lvp1 mutant and wild-type plants were all still vegetative.[1].


  • To investigate the role of SDG724 in aphotoperiod-insensitive background, lvp1 se5 double mutants were created using a se5 nonsense mutation in Nipponbare,the same genetic background as for the lvp1 mutant[1].
Figure 3.SDG724 Acts as a SET Domain–Containing Histone Methyltransferase.[1]
Figure 4.Proposed Model for theSDG724Flowering Pathway in Rice.[1]
  • Genetic analysis demonstrated that the late flowering phenotype of lvp1 segregated as a complete monogenic recessive trait.Therefore, we carefully selected 1147 extremely late-heading plants from an F2 population derived from a cross between lvp1 and Minghui 63 and used a map-based cloning strategy to identify the candidate gene[1].
  • Under Beijing field conditions,lvp1 plants did not show heading even in November, 160 d after germination, when the weather became too cold for rice growth[1].
Figure 2. Phenotype of the lvp1 Mutant.[7]


  • Chromatin structure is important for eukaryotic gene expression, and histone Lys methylation has drawn special attention due to its complex role in this process[7].
  • Ehd1, which encodes a B-type response regulator, is a unique transcriptionalregulator and promotes flowering by controlling FT-like gene expression independent of Hd1 under both SD and LD condi-tions in rice[8].

Evolution

  • SET domain–containing proteins are well annotated and characterized in Arabidopsis[9].
  • There are at least two independent flowering pathways in rice.The Heading date1 (Hd1) pathway is conserved between rice and Arabidopsis, but the Early heading date1 (Ehd1) pathway is unique to rice[8].


  • RFT1 and Hd3a encode two rice florigens and are closely linked in the genome, separated by only 11.5 kb. However, RFT1 and Hd3a have functionally diverged to control the LD and SD flowering time pathways, respectively[10].

Labs working on this gene

  • State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics andDevelopmental Biology, Chinese Academy of Sciences, Beijing 100101, China
  • Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
  • Key Laboratory for Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, 100875 Beijing, China
  • Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
  • State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences,Hangzhou 310006, China

References

<references> [1]

[5]

[6]

[9]

[7]

[8]

[10] [2] [3] [4] 〈/references〉

Structured Information

Gene Name

Os09g0307800

Description

Nuclear protein SET domain containing protein

Version

NM_001069362.1 GI:115478463 GeneID:4346677

Length

7580 bp

Definition

Oryza sativa Japonica Group Os09g0307800, complete gene.

Source

Oryza sativa Japonica Group

 ORGANISM  Oryza sativa Japonica Group
           Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;
           Spermatophyta; Magnoliophyta; Liliopsida; Poales; Poaceae; BEP
           clade; Ehrhartoideae; Oryzeae; Oryza.
Chromosome

Chromosome 9

Location

Chromosome 9:8605019..8612598

Sequence Coding Region

8605843..8605869,8606906..8606971,8607055..8607106,8607517..8607720,8607837..8607917
,8608003..8608174,8609280..8609358,8610514..8610613,8610960..8611059
,8611590..8611707,8612450..8612473

Expression

GEO Profiles:Os09g0307800

Genome Context

<gbrowseImage1> name=NC_008402:8605019..8612598 source=RiceChromosome09 preset=GeneLocation </gbrowseImage1>

Gene Structure

<gbrowseImage2> name=NC_008402:8605019..8612598 source=RiceChromosome09 preset=GeneLocation </gbrowseImage2>

Coding Sequence

<cdnaseq>atgcctcggccggcgaaaatcaggaaaaaacatgagaatgtgtttgatcaattgatcaaggcgataaaagctcctgtggactttgatctgccgcctgtattgaaagaatggaagtcaaattactatgtgccaattaagcggaatgcttatattactcggaaacgcgttgaggatgatggcattttttgttcctgtaccccttctggatcatccgcaacttgtgacaaagattgccaatgcgggatgttgttctcttgttgttcgtcgacctgtaaatgtgagaataaatgtgctaacaaaccgttccagcataggactttgaggaaaaccaaattaattaagacagagaaatgtggcaatggggtggtagctgaggaagatattaaaaaaggagaatttgtaatcgaatatgttggagaagttattgatgacagaacatgtgagcagagactatggaaaatgaagaggcagggtgacactaatttctatctttgtgaggtcagtagtaatatggtgatcgacgcgaccaacaaaggaaacatgtcgcgcttcataaatcatagctgtgagccaaacacagagatgcagaaatggactgttgagggagagaccagagttggaatttttgctcttcgtgacataaaaacgggggaggagctgacctatgattacaagtttgtccaatttggagctgatcaagattgtcactgtggatcttcaaactgtcgaaaaatgcttggcatcacaaagcctgttaactcaattgtacttcataatggaaatctgtcacaagatcagcatgtccggaagaaaagaaagacatatttggagaattgtattggggagattgtccgtttgtggcatcgacgtcacagcatgtatctcgcagcaagtatatatgacttcaatgagcgcaatggaatacatacattattgtttaccgatgcaactattgaagaatttgatttgagagaggaagattgggacttcttaccggatccagatggtcctgaggaagtgtga</cdnaseq>

Protein Sequence

<aaseq>MPRPAKIRKKHENVFDQLIKAIKAPVDFDLPPVLKEWKSNYYVP IKRNAYITRKRVEDDGIFCSCTPSGSSATCDKDCQCGMLFSCCSSTCKCENKCANKPF QHRTLRKTKLIKTEKCGNGVVAEEDIKKGEFVIEYVGEVIDDRTCEQRLWKMKRQGDT NFYLCEVSSNMVIDATNKGNMSRFINHSCEPNTEMQKWTVEGETRVGIFALRDIKTGE ELTYDYKFVQFGADQDCHCGSSNCRKMLGITKPVNSIVLHNGNLSQDQHVRKKRKTYL ENCIGEIVRLWHRRHSMYLAASIYDFNERNGIHTLLFTDATIEEFDLREEDWDFLPDP DGPEEV</aaseq>

Gene Sequence

<dnaseqindica>6730..6756#5628..5693#5493..5544#4879..5082#4682..4762#4425..4596#3241..3319#1986..2085#1540..1639#892..1009#126..149#ttctgctccgacctcacctcgcctccttcctccgccgactccctcccctccgccattgcagcctcgcctacggccttgagctcgtcgccgatccccgccaccgccgcgacctctgcctgccccccatgcctcggccggcgaaaatcagggtacacttcctcccatgcttgcacctcttcccctttccgcgtaaaccctaaacccgaaatttcctgcaatttttttttaaaaaaattttggtcgaatcttcgctagggaaccgcatctctaccgtttttgttgtgccttgcaaaggtttgtctccccttcgagagaagcagcaaggggagttatggagtatatggattaggggttcagggtctcagatgcgttcttgtgctaccttggaaggagtattttgttcattagattttttttcttttttttttttgcggggaaaagttgttgatcagacttgggatggctacagtggaaattacaggagcgatgtggtgttaggtctctaacctgcaggaaacagggcgagtattttgaattggaatacgatggcctaagtgagtgaagctttgttgggactgctagtgttgaccaggactgttggattaatccgttgaaatgagtgaacacatgactggactcttattgaccaaacgtatcttatattcgatgggattataacatggcacggccaatactctacacccattacttcattgcttttatttctccgttgttgcatacacgtgcatgacagaaaagaggctacaccatatctgagtagactgattctgttactatctctatttttgttttatatgcttgttacctcattttttgttggttaactcataattctatatgcttatttatcttcatgtctctatgctgcagaaaaaacatgagaatgtgtttgatcaattgatcaaggcgataaaagctcctgtggactttgatctgccgcctgtattgaaagaatggaagtcaaattactatgtgccaattaagcggagtatccttacccaccattgcatttaatctgtttcctttctcggagcagcaatgatttgcgtcctcctcatttatacttgcaatgtctctggttaaaatttcattccttggagcaatcattctacaaacttgagtgtatatttatcagtctctgctgtagcattctagattgattgtatatccgaaaatttactaaatcctaatgtactacaaagtataatatagcataggaaagtcagtggtttgttttttcaataatgtgtcttgtcacagggatgcatttaacaacggcttcaacaacgtgttttcacatggggttgtatttcaaaattgcttaagatggtatcttcaatattccaatctgttgaatctcatttttataacatagccatccaattactcgtttacaattgcatggctggaacatcttaatttcacaatgtaaacagaggacttgccttttactgctgtaaaatttctgtttgtctaaaattttatttagcattacggttgtccttaattctacgtaagatgcttatattactcggaaacgcgttgaggatgatggcattttttgttcctgtaccccttctggatcatccgcaacttgtgacaaagattgccaatgcgggtaatctctctctcccccctctctgctccaacttgcatccatcatatagccatgatactattatgaatatagctcgtattgaataatagcctcaaggaggcaatatatagagtgcatatagcgttaggactctaacctatagcatgtaaagggataacccatatatgcaaaagactttatattcctaactgatacaacctagagtgtttgagtctgctcttttttttttttttgtcttgaacctaacctcattaataaaatggtaagtttcttattagaataacctgtaaactttattggtattgagtgttgaggcattctaaaatactgtatttttgtgatgcaggatgttgttctcttgttgttcgtcgacctgtaaatgtgagaataaatgtgctaacaaaccgttccagcataggactttgaggaaaaccaaattaattaaggtatgattgaatcaagtttctaccattgttgagttggcagattaccatttaagctgactgtggataaatatgccattgctgtagctgatgctaataaagttttgatgcaataaatgttataaaaatagtctttcaactatgtgttccttgttaaaaatgtcagcttttcttgtgtaaagtgtaaactgtaaagtaatataggagtataggacacttgttaaaaatgtcagcttttctcgtggaaactataaagtagtatacgagtataggacgctgtgaatgataaaggaaatgttagccatatgaaataaatgagaagaaaaacttaaactatgaatccagttatggtaggatagatctcaatcagattatggtagattattaatttctttcaaaactttccgtataatatcgatacgattgggaataaacctccttgtttgggcattccttcttaagtaatgtctattatatacccctcaagtacggtaaccaggtaaaacgcccccccccccccctaggcagaatccaacctgattttaatggtgattttcatgattttaacatccattaatctggttgtctgctctcctagtttcataatgcattcctacttcctagtatagcatgattccttggtgtcctgtgaatattccactgttatgcttcttcggatttgaccaggacagggatgggttatttcttacccaatagtgctaggtcagtgtggtcaggaattctcttcatcctgctgcccatgctccttatttgtctggcctgtttgtttcacaattttcaaatcctcgttctatcatttacaactcataatacagtgcctttttacttgcttaataatcagacattttagaaacattatatccatatccctttatattttctgtatgtttggccttatgtctatgtacaatacgcgattaactaatttgtagtataccttccaacatcgccttcatatagaggcatattctatcgtcagcatatcctgtaccatagccatccaaattcctttatatctttgtgatctcatgattgacattcataatctactttcccatgtttctatactgtatttagtatttagtacagatttatccctttttatctataccctaaatgactaacagtttcttctagacagagaaatgtggcaatggggtggtagctgaggaagatattaaaaaaggagaatttgtaatcgaatatgttggagaaggtatggttttctacatcctgtgcacatacgtaaactttatttgtaagtacgtaaggatcaaaacaattcaactttattattacttctatacaaaagtatactcactccttaccatagtataagggttattgggtggatgtgacacatcatagtacaatgaatctggacagacggtctgtccagattcattgtactaggatgtgttacagccatccaaaatcacttatattatgggatggagggagtataccgaatccacagtaatacttatttttttactttttatttttttcatttttaattattaaacaattagaattaatatatacaatggtttacttgtcacggagtcttaatttttgtttgtccttgatttttttttttgcaagatatgaattgtagtactgagattcgaaagtaatgaataaaagctttacatacaaagctgtaactggtttaagtctcaaaattcaattttggtaagtcgtattctgtcccaaaatatagctacctttgtagttcaaggctatgttttgggacagggagtataaatttgttgtttgtacgtagttctaatcttatttgttcttgatgaaacaaattctaagtttggaattaatatagaagttgtacttgtcttggagttgcaatttgagtttttttatatttagtaattccaaaactcagaattcataaatattgtatctgtcttggaatctcaaccttctatcctgttaatttagttatggatttagaaattactaaaaagcaagttgtaacttacttcacttggactcttcttttaattcaagtcgtcatggtttagtcccacctagattaatgaccagatttttatccactactgtgcttaaacgtgagattttcctcagagtgtccgattagtataggtatagatagatcgataattcgatctattgatatgagttctcacattgaacatattggtaatcaaactaaagtccagaatccagattgtgggttggagggctatcatatcctccagtaaatctttttcaaactgttacaatatacaataacttggagctaaaaactaatatccacatatcttgcaaacatattgtagttattgatgacagaacatgtgagcagagactatggaaaatgaagaggcagggtgacactaatttctatctttgtgaggtcagtagtaatatggtgatcgacgcgaccaacaaaggaaacatgtcgcgcttcataaatcatagctgtgagccaaacacagagatgcagaaatggtaagttatactcttgtcagctcattcatatatgctgttcttctaacatcaccctgatatatgactagtatttatattgtttcaggactgttgagggagagaccagagttggaatttttgctcttcgtgacataaaaacgggggaggagctgacctatgattacaagtatttttgttctagttctatccttgacttcttttcatttcactcgggcataatgattcatcattttctgtatatggaactactcctggtatttaatttctcggctttacctacaggtttgtccaatttggagctgatcaagattgtcactgtggatcttcaaactgtcgaaaaatgcttggcatcacaaagcctgttaactcaattgtacttcataatggaaatctgtcacaagatcagcatgtccggaagaaaagaaagacatatttggagaattgtattggggagattgtccgtttgtggcatcgacgtcacagcatgtaagctttggtaactgtagattcttctaaccatcggatgatgtatttttcctataatctgagaatctacctatctagttatcatatactatttgggaaaatgtgataagttgtccaattcaacacctgctctctactggattgataaactcggtgttaaggttggaaatggggttagtttttcatggctgcctatgagtaacattttggctccaagtggttatgtatatcactagttttgacttcatctaacaaaaccattgagagtagatgcacagtttattttaacttccaagatgttttagtacatctgattgaggaagttgatttccctttctttctttctttcttttttaactttttgagattagatccattataaccacttgattatttatctcattgttcaggtatctcgcagcaagtatatatgacttcaatgagcgcaatggaatacatacagtgagtttgtcaacatatggcttgcatagtgtagggtgtgtaatttctggaaaaacaattttatatgttttgtattgttgtagttattgtttaccgatgcaactattgaagaatttgatttgagagaggaagattgggacttcttaccggtatgatgttcttagcattaaccaagttacaaatatgtcctatttttcttatttaacatttggatctaccgtggcaacatgcggggtatcatctagttctctatatttctagcaaccatagcctgaagtttccatgatgttgtccactttatcctctacgtcatgcagaccttttgtataatccaattttatcataaatatatttattatttcagtaggtctttcctctactttatataaaaaatagtgtttagcattgccgtctttgatttttttatgtaaaaaaaggataatagtacttctgtatcctggtggtagcattaagtgtaatggagaacaacattctatagaaacttttggccgaatgtagctttccacatcgttatagcacatgttcggatggacctgtcttttcttcttgtcagcaacattgcttgtgctccccattgagtgtgtcaaccgcaaacttttttttgtttttactgattgggctgcgtataacctcctgatctgggctcttagcaggattatgtctaagatgttcttttattgaaggtttaacttgcataatgtttaggatttaatgtgcttgtttacgattctagttgaggaccaagagcttaggaaatgtttttgtgaacctatgagcacctgcactcattctcactgtaaaaggagttgtaactgaactagtatatacctctgttagcagcaatatgttatgcaggaatccttagcaattagacaatttaccctcctctaaaattcactggaatcttgaaatatgataacaattgattgaacctcatcctccattgctcttggaataactttgatgcatctatcgcaccatcattccttggtttgtagcttacagtgtagaagtaaataatgctcactatctgagcttgggcctagtttacttgatgtttcctgactgtttacctgaacttgctgtttatgaagcctgacttaaataaccgaaccttatcatttgcttctggcaaagtaacttaaccttatatgttattttcaggatccagatggtcctgaggaagtgtgagtgatctgaaggtattggcaaaaatagtgtgcatacccaggcattttatttttctgtttatattatttgttgaggttggttatgctaggagtaggaacatattactgtactacttaagcagaacattggcctttaccatcatcagatagagcatccggtaggggtttattttctgcatcagtggttcgtgtaccccttttccattttctaaaggttaatttgaaatttccttttccatttcctaaaggagttatttgaaatttcctttctgttttttctatagtattcatggcagttgcatattatttacattcatgttagattgtctcctgtatcatttgcgtgcctagacaaacaatataacttaattctgcaatagcatgtgaattgacactcctaaatatttcaagctaatcattcccatgtccttgtggttctctgtatgaacagcttcatatgaggatgtcatcgcaactgtgtcaatcggatgattgtactgttgggatttaacatgtggaagtgtttagctgcaatcatccacccacaaatcaattcttcagagcgtgtacccaacatgatactgtcctcctaaactgtaaaaagcttttttcaattgttgaatgttcattaatttttttcaggtttgtatcaatcgaagtgcatcttgtgatgcttgtaaaaattgttggctgggtgagtttacaatcgttgttgtaacgtgcgatggtgatagtttattagtttagtttatgctgttataccatgtagttatgcttgtactgagagctacttgaaccataagatatttcggtatgtctgctctt</dnaseqindica>

External Link(s)

NCBI Gene:Os09g0307800, RefSeq:Os09g0307800

  1. 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11 ChanghuiSun,1JunFang,TaolanZhao,BoXu,FantaoZhang,LinchuanLiu,JiuyouTang,GenfaZhang,Xiaojian Deng,Fan Chen,dQian Qian,eXiaofeng Cao,and Chengcai Chu The Histone Methyltransferase SDG724 Mediates H3K36me2/3 Deposition at MADS50 and RFT1 and Promotes Flowering in Rice The Plant Cell, Vol. 24: 3235–3247
  2. 2.0 2.1 Liu, C., Lu, F., Cui, X., and Cao, X.(2010). Histone methylation in higher plants. Annu. Rev. Plant Biol.61:395–420.
  3. 3.0 3.1 Berr, A., Xu, L., Gao, J., Cognat, V., Steinmetz, A., Dong, A., and Shen, W.H.(2009). SET DOMAIN GROUP25encodes a histone methyltransferase and is involved inFLOWERING LOCUS Cacti-vation and repression offlowering. Plant Physiol.151:1476–1485.
  4. 4.0 4.1 Xu, L., Zhao, Z., Dong, A., Soubigou-Taconnat, L., Renou, J.P.,Steinmetz, A., and Shen, W.H.(2008). Di- and tri- but not mono-methylation on histone H3 lysine 36 marks active transcription of genes involved inflowering time regulation and other processes in Arabidopsis thaliana.Mol.Cell.Biol.28:1348–1360.
  5. 5.0 5.1 Kim, S.Y., He, Y., Jacob, Y., Noh, Y.S., Michaels, S., and Amasino,R. (2005). Establishment of the vernalization-responsive, winter-annual habit in Arabidopsis requires a putative histone H3 methyltransferase. Plant Cell 17: 3301–3310.
  6. 6.0 6.1 Ma, Y.M., et al. (2009). Molecular analysis of rice plants harboring a multi-functional T-DNA tagging system. J. Genet. Genomics 36:267–276.
  7. 7.0 7.1 7.2 Wu, J.I., Lessard, J., and Crabtree, G.R. (2009). Understanding the words of chromatin regulation. Cell 136: 200–206.
  8. 8.0 8.1 8.2 Doi, K., Izawa, T., Fuse, T., Yamanouchi, U., Kubo, T., Shimatani, Z., Yano, M., and Yoshimura, A. (2004). Ehd1, a B-type response regulator in rice,confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes Dev.18: 926–936.
  9. 9.0 9.1 Springer, N.M., Napoli, C.A., Selinger, D.A., Pandey, R., Cone, K.C.,Chandler, V.L., Kaeppler, H.F., and Kaeppler, S.M. (2003). Comparative analysis of SET domain proteins in maize and Arabidopsis reveals multiple duplications preceding the divergence of monocots and dicots. Plant Physiol. 132: 907–925.
  10. 10.0 10.1 Komiya, R., Ikegami, A., Tamaki, S., Yokoi, S., and Shimamoto, K.(2008). Hd3a and RFT1 are essential for flowering in rice. Development 135: 767–774.