Os04g0452500

From RiceWiki
Jump to: navigation, search

ZEP1, a transverse filament (TF) protein, is the rice (Oryza sativa) homolog of Arabidopsis thaliana ZYP1

Annotated Information

Function

Nucleotide sequence analysis of the ZEP1 cDNA revealed that it is comprised of 3391 bp with an open reading frame of 2610 bp. ZEP1 has 21 exons and 20 introns The ZEP1 protein contains 869 amino acid residues, with a central coiled-coil region of 650 residues (amino acids 64 to 713; The N-terminal globular domain of 63 residues (amino acids 1 to 63) is basic, which is different from the acidic N termini of the mouse and budding yeast TF proteins but consistent with the Arabidopsis protein. The C-terminal globular domain of 156 residues (amino acids 714 to 869) has a high pI (9.44) and putatively binds DNA[1].Additionally, the C terminus of ZEP1 contains two S/TPXX motifs, SPET (amino acids 751 to 754) and SPIT (amino acids 767 to 770), which are possibly involved in DNA binding[2]. ZEP1 Is the TF Protein of SCs in Rice. ZEP1 is the central element of the synaptonemal complex. ZEP1 is reloaded onto chromosomes in early microspores as the chromosome decondense. ZEP1 might be important for maintenance of chromosome decondensation during early microspore development.ZEP1 played an important role in chiasma terminalization[2].

Wild type vs. Mutant

The mutant is the Tos17-insertional zep1 mutants and four single Tos17-insertion mutant lines of the ZEP1 gene were identified by screening the public insertion line collections. Sequence analysis of their PCR products confirmed that Tos17 was inserted in exon 8 of two independent lines and in exon 12 and intron 12 of the other two lines, which were referred to as zep1-1, zep1-2, zep1-3, and zep1-4, respectively. The four homozygous zep1 mutants showed normal vegetative growth and development, but with pollen abortion and decreased seed sets. The seed setting and pollen fertility of the ZEP1/zep1 heterozygote plants are normal(Figure 1).

Figure1.The matured panicle and pollen grains stained with 1% I2-KI solution in the ZEP1/zep1-1 heterozygote plant.(A) The panicle.(B) Pollen grains. Bar=50 μm([1]).

The zep1 mutant shows abnormal synaptic behaviors and more COs during prophase I. In zep1-1, the chromosome behavior was almost the same as in the wild type from leptotene to zygotene (Figures 2J and 2K).

Figure .2 Meiotic Chromosomes Stained with 4’,6-Diamidino-2-Phenylindole in Both Wild-Type and zep1-1 Pollen Mother Cells. Bars = 5 mm.(A) and (J) Leptotene.(B) and (K) Zygotene.(C) and (L) Early pachytene.(D) and (M) Pachytene. In zep1-1, the COs are visible as indicated byarrows in (M).(E)and(N)Diakinesis.[1].

At early pachytene, the two threads of the bivalents were always visible, although the homologous chromosomes could align perfectly along the entire chromosome length (Figure 2L).However,during early prophase I of the wild type, the homologous chromosomes began to pair (Figures 2A and 2B). The SCs were fully assembled at pachytene (Figures 2C and 2D) and fell apart. At late pachytene, all of the chromosomes were separated into single threads, while the two homologous chromosomes of each bivalent were still connected by several chiasmata, indicating that COs had occurred during the early stages (Figure 1M). At diakinesis, 12 bivalents could be detected in every nucleus (Figure 1N), and the two homologous chromosomes of the bivalents were tightly connected side-by-side and ringshaped bivalents were seldom detected. At metaphase I, 12 bivalents in zep1-1 were lined up on the equatorial plate (Figure 1O), but the two centromeres of each bivalent were dragged out far away in opposite directions by spindle fibers. the chromosome behavior was almost the same as in the wild type at anaphase I to zygotene and during meiosis II.

Expression

By means of RT-PCR analysis shows that ZEP1 isexpressed mainly in young panicles and roots, and to a lesserextent in leaves and stems (Figure 3A).

Figure3.Expression analysis of ZEP1.(A) Transcription levels of ZEP1 in various tissues by Real-Time RT-PCR. Error bars represent SD (n=4).(B) Western blotting analysis of ZEP1. Lane 1, leaf tissue of wild type; Lane 2, young panicle of wild type; Lane 3, young panicle of zep1-1; Lane 4, young panicle of zep1-3.

Evolution

ZEP1, a transverse filament (TF) protein, is the rice (Oryza sativa) homolog of Arabidopsis thaliana ZYP1. TF proteins have been reported in many organisms, including budding yeast, Drosophila melanogaster, Caenorhabditis elegans, mouse, and Arabidopsis thaliana[3][4][5][6][7][8][9][10].ZIP1 in budding yeast was the first TF protein identified[5][11]. You can also add sub-section(s) at will.

Knowledge Extension

ZEP1 played an important role in chiasma terminalization. Chiasma terminalization might be affected by many factors, such as heterochromatic regions and structural rearrangement. Yet, the molecular mechanism of chiasma terminalization is still unknown. It is suspected that the defects of chiasma terminalization in zep1 might be related to two aspects: one is the increased number of COs, and the other is the later depletion of PAIR2 and other meiotic elements[1].

ZEP1 can also reload onto chromosomes for two more rounds from prophase II to the early microspore stage as the chromosomes decondense in the wild type. In addition, ZEP1 could reload normally onto chromosomes in dyads, tetrads, and in early microspores in mutants of both pair2 and mer3[1]. This shows that the function of ZEP1 after meiosis I is independent of both PAIR2 and MER3. To a certain degree, the mechanism of ZEP1 reloading onto the chromosome during meiosis may be similar to INCENP, a component of the chromosomal passenger complex.

Labs working on this gene

  • State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
  • Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of Ministry of Education, Yangzhou University, Yangzhou 225009, China

References

<references> [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

  1. 1.0 1.1 1.2 1.3 1.4 1.5 Mo Wang, KejianWang, Ding Tang, Zhukuan Cheng, et al.(2010)The Central Element Protein ZEP1 of the Synaptonemal Complex Regulates the Number of Crossovers during Meiosis in Rice. The Plant Cell. 22(2): 417-430.
  2. 2.0 2.1 2.2 Suzuki, M. (1989). SPXX, a frequent sequence motif in gene regulatory proteins. J. Mol. Biol. 207: 61-84.
  3. 3.0 3.1 Meuwissen, R.L., Offenberg, H.H., Heyting, C. (1992). A coiled-coil related protein specific for synapsed regions of meiotic prophase chromosomes. EMBO J. 11: 5091-5100.
  4. 4.0 4.1 Page, S.L., and Hawley, R.S. (2001). c(3)G encodes a Drosophila synaptonemal complex protein. Genes Dev. 15: 3130–3143.
  5. 5.0 5.1 5.2 Sym, M., Engebrecht, J.A., and Roeder, G.S. (1993). ZIP1 is a synaptonemal complex protein required for meiotic chromosome synapsis. Cell 72: 365–378.
  6. 6.0 6.1 Heyting, C. (1996). Synaptonemal complexes: Structure and function. Curr. Opin. Cell Biol. 8: 389–396.
  7. 7.0 7.1 MacQueen, A.J., Colaiacovo, M.P., McDonald, K., and Villeneuve, A. M. (2002). Synapsis-dependent and-independent mechanisms stabilize homolog pairing during meiotic prophase in C. elegans. Genes Dev. 16: 2428–2442.
  8. 8.0 8.1 Colaia´ covo, M.P., MacQueen, A.J., Martinez-Perez, E., McDonald, K., Adamo, A., La Volpe, A., and Villeneuve, A.M. (2003). Synaptonemal complex assembly in C. elegans is dispensable for loading strand-exchange proteins but critical for proper completion of recombination. Dev. Cell 5: 463–474.
  9. 9.0 9.1 de Vries, F.A.T., de Boer, Pastink, A. (2005). Mouse Sycp1 functions in synaptonemal complex assembly, meiotic recombination, and XY body formation. Genes Dev. 19: 1376–1389.
  10. 10.0 10.1 Higgins, J.D., Sanchez-Moran, E., Armstrong, S.J., Jones, G.H., and Franklin, F.C. (2005). The Arabidopsis synaptonemal complex protein ZYP1 is required for chromosome synapsis and normal fidelity of crossing over. Genes Dev. 19: 2488–2500.
  11. 11.0 11.1 Storlazzi, A., Xu, L., Schwacha, A., and Kleckner, N. (1996). Synaptonemal complex (SC) component Zip1 plays a role in meiotic recombination independent of SC polymerization along the chromosomes. Proc. Natl. Acad. Sci. USA 93: 9043–9048.

Structured Information

Gene Name

Os04g0452500

Description

Prefoldin domain containing protein

Version

NM_001059487.2 GI:297602830 GeneID:4336010

Length

8343 bp

Definition

Oryza sativa Japonica Group Os04g0452500, complete gene.

Source

Oryza sativa Japonica Group

 ORGANISM  Oryza sativa Japonica Group
           Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;
           Spermatophyta; Magnoliophyta; Liliopsida; Poales; Poaceae; BEP
           clade; Ehrhartoideae; Oryzeae; Oryza.
Chromosome

Chromosome 4

Location

Chromosome 4:22981985..22990327

Sequence Coding Region

22981985..22982141,22982236..22982285,22983717..22983924,22984349..22984447,22984609..22985285
,22985363..22985611,22985688..22985816,22985901..22985969,22986063..22986173
,22987241..22987348,22987421..22987531,22987605..22987691,22989003..22989092
,22989175..22989267,22989395..22989484,22989579..22989641,22990229..22990327

Expression

GEO Profiles:Os04g0452500

Genome Context

<gbrowseImage1> name=NC_008397:22981985..22990327 source=RiceChromosome04 preset=GeneLocation </gbrowseImage1>

Gene Structure

<gbrowseImage2> name=NC_008397:22981985..22990327 source=RiceChromosome04 preset=GeneLocation </gbrowseImage2>

Coding Sequence

<cdnaseq>atgcagaagctgggtttatcggggcttaggggtctcgaggggttccgatctctcgctggatccacctcgacggccgcgaaggccccgaaccccaagccgtcgtccgatattggagggagcacgtacgggagcttcgccaatcttaagatcacagcagaaaagctggttaaggagcaggcttcagtgaagactgatctagaaatgacgcataccaagttgagaagagcaacagaacagataaatctgttagaagcaaagctccaacaagctgtcaatgaaaatgcaaagcttaaggtgaaacagactgaagattcaaagctctggcagggattagattcaaaagtttcctcaacaaagactttgtgcaatcaactgacagaaactctgcagcagttagctagtcagacagaaagagggaaacaggagatgttgcggatcaaacaagagaaagaagagatggatcagagttacaaggaacagctatatgcaagtgatactaccataagagaaaaaaattctctcatcaaacagttggaagattccattgaacaaaataaagcccgactgttgtatgttgactcccgtttggaatgcatggagcaagagttgaagctaaaagaagatgtttgcatttgtctgaaagaaaacctggcaagcactgaaagtgaaaagaatgacttgaagcttaggaacgagggctacactttggaagttcagaaactatccaaggacaacaaggagcttaatgaattgcttagtggttttacggttaaggtaactgagctagataaagagcacacatcaatttcaagtcatgtcactcagttgatttcttcatttgagagatatgatggaaaggttcacgaggaaaaaatgttgatgataaaatctgccaaggacaaatttgaacatctccaaaatcagtatgtaaatttgatatcagaaaacaatgctctccaaactgaaatcgaggagctgaagtccagaatcatagagctgcagaaaactcaagagattgtcatggttcaacatgtagaagaatgccaagttgctgaagataagatcagaagattggagtctgaagcagaaatttctgcctccaacattagtcagctagaaaaggtagcttctgacctagaagggagggttcaaaaacttctggaggattctagatctgctgaaaatcacaagcaagagttgcttcagaagattctgaagctagaatcagataatcaggagcttctaggtcgagtgcaatctgttttgaatgagaagtctaatgatacggaatctctgcaaggagagatagctaagcgtgaccaacaggttgagacacttgagaaccaggtcaatcagctttgcagtattattgatgagaaagaacaactacacacttgtgctgtagaaagagagaagaatttagaggaacagaagttacaggtccaagcatcacttgctgcaacagaaagccaacttactgaggcaaaaaaacagtatgatatcatgcttgaaggtaaaaagatagagctgtccaagcatctgaaagaattatcactgaaaaatgaccaggcaatcaatgaaatccgtaggaaatatgaactagaaaaggtagaaatcattaatattgaaaaagaaaaggccgagaagctcataaaggaaatggaaaacaaatgcaatgaaaagatttcagaaaacaggcaagattctgagaggtatttgatgtgtctaaaggaggagcatggctcaatggttgcaagaattcagcaggataatgagcataaggaatcaactcttcgagcttatcataaagaagaactccagcgcatccaatctcaggctgagaatgaattgagggagagattgtcatcgctcagaaaggatcatgaaattcaaatgaaatcattgactaaaaagcatgaggaaaattgtcagaagcttcaggatgaactggagcttcagaagtcaaaggaggagaagcaaagagcattgttacagttacaatggaaagtaatgggcgaaacccaacaggttgatcaagaagtaaactctaagaaggaatactctgtttcatcaataaagaggagagatccatatatcagaaaagaacatcagcttcagttggttagtcctgagaccaaacggaaggatgttaatctatctggcattatacaatcaccaattacaaacatgctgagaaaggtagagaaaggaacccaggatattcctaagcatagaaaggtaacacatcatgaatatgaagttgagacagcaaatggaagaatcacaaagcgcaggaaaactaagagcaccgtcatgtttggggtacaggaacccaacactcagaagtcattgcatgatactgctgacaaggatcctacaaaaatgaagaaggttgttgctggatcccatccccaccctgcaaacattggtgaattgttttctgagggctcgttgaatccatatgccgaagatccttatgcatttggctag</cdnaseq>

Protein Sequence

<aaseq>MQKLGLSGLRGLEGFRSLAGSTSTAAKAPNPKPSSDIGGSTYGS FANLKITAEKLVKEQASVKTDLEMTHTKLRRATEQINLLEAKLQQAVNENAKLKVKQT EDSKLWQGLDSKVSSTKTLCNQLTETLQQLASQTERGKQEMLRIKQEKEEMDQSYKEQ LYASDTTIREKNSLIKQLEDSIEQNKARLLYVDSRLECMEQELKLKEDVCICLKENLA STESEKNDLKLRNEGYTLEVQKLSKDNKELNELLSGFTVKVTELDKEHTSISSHVTQL ISSFERYDGKVHEEKMLMIKSAKDKFEHLQNQYVNLISENNALQTEIEELKSRIIELQ KTQEIVMVQHVEECQVAEDKIRRLESEAEISASNISQLEKVASDLEGRVQKLLEDSRS AENHKQELLQKILKLESDNQELLGRVQSVLNEKSNDTESLQGEIAKRDQQVETLENQV NQLCSIIDEKEQLHTCAVEREKNLEEQKLQVQASLAATESQLTEAKKQYDIMLEGKKI ELSKHLKELSLKNDQAINEIRRKYELEKVEIINIEKEKAEKLIKEMENKCNEKISENR QDSERYLMCLKEEHGSMVARIQQDNEHKESTLRAYHKEELQRIQSQAENELRERLSSL RKDHEIQMKSLTKKHEENCQKLQDELELQKSKEEKQRALLQLQWKVMGETQQVDQEVN SKKEYSVSSIKRRDPYIRKEHQLQLVSPETKRKDVNLSGIIQSPITNMLRKVEKGTQD IPKHRKVTHHEYEVETANGRITKRRKTKSTVMFGVQEPNTQKSLHDTADKDPTKMKKV VAGSHPHPANIGELFSEGSLNPYAEDPYAFG</aaseq>

Gene Sequence

<dnaseqindica>1..157#252..301#1733..1940#2365..2463#2625..3301#3379..3627#3704..3832#3917..3985#4079..4189#5257..5364#5437..5547#5621..5707#7019..7108#7191..7283#7411..7500#7595..7657#8245..8343#atgcagaagctgggtttatcggggcttaggggtctcgaggggttccgatctctcgctggatccacctcgacggccgcgaaggccccgaaccccaagccgtcgtccgatattggagggagcacgtacgggagcttcgccaatcttaagatcacagcaggttttggtttcattttccccttgtttccttagagggaggctggctacttcgtgcgttcactgatttttccctcaattttattgcttgatcacagaaaagctggttaaggagcaggcttcagtgaagactgatctagaaatgacggtatatttttcagcgtttaccattatttatggaaattttactggatggggtatatagttcggttgtcttgtgctcctgtcacagtttcgatttctggatattaggatatatctggcactgcctttgtggaattgtggttataatgcctaatagcagaaaaactgtcttctgattgatcaatgtcaaacttgcaaagttgtttatgttagtagggctgtttcagttatataatcctggcggcatgatacatacataggcaggggtgtacctatgtgtagtctacaggggtcctaggaccccgggtagattatctaattctagctaatttatgtcatgataattagtataatcggtaaataattaaataattagtatgtttgagaccccggtaaattttgttttggattctccactgtaacataggggtagttttctattcccaattctgtcagggaatcctatcatgattttgtggactactgaaaccagcagtaggtaaaaccaatgaactgtgcacacacctggagctaccttattagctttgaatcgagtaactggtaactatgcacgcatgccagttaccaacatgtcaataaaaatcttctaccattgtaggcagttcacaagcatcaaattcttactccctccgttttttaatatatgacgccgttgacttttgttacaacctttgaccgtttgtcttattcaaaaattttatacaaatcttaaaaatattagtcatgcttaaagttcatttagtgataaatcaaaccacgacaaaagaaaatatatttacttaaatattttgaataagacgaatggtcaaacatgtgagaaaaagtcaatggcgtcatctattaaaaaacggaggtagtataattttagggctgcatgtagatagtgtggatctcatgactgtactttgtgtttgttattcctattactttcctcagaatttacaaatacacagtcgtgctgaaaattgaaacagttttctacttaaaggatgttggatgctgtatatcatcagttttcactattcagcatgacagagtcacattctggaattatgtatttttataaatttgaactttgtacctggaaaaactagaatgttttggtgctttatcctctgtggtttctgttaaacacattggagatcaagcaatttctgccttccatttcatttgtcccatatcctgagctttgaacataagcttgcgcccttccatgttcagtatatggcaatattatctttactgtagtcatctttcatggtgcaaatgttctagttatatcatggataaaaggtaaattgactcaagtcctgaacagatatatcaccatatatcatcgttttgtacaggaacatattgtacttgtttacataatatttcttactactgatgcctatgctctatataactttagcataccaagttgagaagagcaacagaacagataaatctgttagaagcaaagctccaacaagctgtcaatgaaaatgcaaagcttaaggtgaaacagactgaagattcaaagctctggcagggattagattcaaaagtttcctcaacaaagactttgtgcaatcaactgacagaaactctgcagcagttagctagtcagacagaaagaggtaatgtttccatttactcatgcatgagtgctgtatagatctaactggtgaaacaacgcattggcagctgaggaagataagaagttttttgaggagattcttggcaagaattcaaaagcttttgaagaattcaactgcctgttgcacgattcatcaataaaactggaatgtgcagaacaaatgatcatttcaggttggtcagtttcttcacgcgtcagctctagcactagtattttagaatgtctgtcaattcagtaacttgctactggagactgtagatctgctaggggatcactatctgctgtgcttctgtttatgtcatctaaaccatgattattttgcagttccatgtttcttgacatgatttgtgaataataatgtgctgcaattaggtagtaatgcttcatttgtttcattgacacagggaaacaggagatgttgcggatcaaacaagagaaagaagagatggatcagagttacaaggaacagctatatgcaagtgatactaccataagagaaaaaagtatgaatctaatactaaaaattgcatcatgactaaacagaaattaagttagctatggtgcgatagtccactgaaaattttttgtatactccattcatgtgcatccggtgtattagcacaaacaaaaagtagtaacacaactgtgtccatcttttatgcagattctctcatcaaacagttggaagattccattgaacaaaataaagcccgactgttgtatgttgactcccgtttggaatgcatggagcaagagttgaagctaaaagaagatgtttgcatttgtctgaaagaaaacctggcaagcactgaaagtgaaaagaatgacttgaagcttaggaacgagggctacactttggaagttcagaaactatccaaggacaacaaggagcttaatgaattgcttagtggttttacggttaaggtaactgagctagataaagagcacacatcaatttcaagtcatgtcactcagttgatttcttcatttgagagatatgatggaaaggttcacgaggaaaaaatgttgatgataaaatctgccaaggacaaatttgaacatctccaaaatcagtatgtaaatttgatatcagaaaacaatgctctccaaactgaaatcgaggagctgaagtccagaatcatagagctgcagaaaactcaagagattgtcatggttcaacatgtagaagaatgccaagttgctgaagataagatcagaagattggagtctgaagcagaaatttctgcctccaacattagtcagctagaaaaggtagcttctgacctagaagggagggttcaaaaacttctggaggattctagatctgctgaaaatcacaaggtttgtgtcctagcctgttcagtgacaaaacatattgctatttaacctgtaagattcatgaggtttgaattttgcagcaagagttgcttcagaagattctgaagctagaatcagataatcaggagcttctaggtcgagtgcaatctgttttgaatgagaagtctaatgatacggaatctctgcaaggagagatagctaagcgtgaccaacaggttgagacacttgagaaccaggtcaatcagctttgcagtattattgatgagaaagaacaactacacacttgtgctgtagaaagagagaagaatttagaggaacagaagttacaggtctgtgcttattagaactttaaatctcattgtaatgatctatagacaacatacaatcttttctgtctactgccaggtccaagcatcacttgctgcaacagaaagccaacttactgaggcaaaaaaacagtatgatatcatgcttgaaggtaaaaagatagagctgtccaagcatctgaaagaattatcactgaaaaatgaccaggtattacgcttctatcagctgtatcctgtatgacactttgctatatcaatcacaagtgacagttagaaaagtgcatttttgcaggcaatcaatgaaatccgtaggaaatatgaactagaaaaggtagaaatcattaatattgaaaaagaaaaggtaagttaacctcttttttcaaagttattatgctagctgttttgagtttgatcttattctctatctattttctggatgttgaaaaatatttaggccgagaagctcataaaggaaatggaaaacaaatgcaatgaaaagatttcagaaaacaggcaagattctgagaggtatttgatgtgtctaaaggaggagcatggctcaatggtaggtggtactggttggatctgtccattaaagttaagctgttttgaaaaaaaaaagtgaagtttacaattagttatgataacaatgctaattttgaaatttgaaaatgattattaataattattttaggttgaagtttgtttatttgtcttggtagcaatcatgaaaagagagctaggcaataaaagtgaataaaaacctttaaaattaatgctaaaatcaaatcctaaaattgaaaaaagctgcagtttttaagggaaaaaactgagccaagtggagccacatgcgccagtttccattggaaatgttagctctagtatttgaacaaggtgttgatagcatggatacataattgcattgtggatgttcatgttctgctatgctgcattccgctacagaggattagtaacctaaaaaggttactcaaggtctttctacgtgtgcttttaatatgctttgtccaaaacacccacttggtagttatatgtgttgcaaagtttctttgaaggtgctttaggtaatgctctccttgcctgtcttttatttaatttgcactaggcacaaaacatgacatcaaagtatgatctatcatatttcatcaatatacattgttaatgtaaatggtatttggactttactggttgatttcatggttctcttaagatttaataagtcaaaaatgtcatctgatatttgagcagagctgcagagaatgtatttgacacaactttatggccgtaggacttacacatctattctaatataattttgatgttccatttggttttgcagcagttttgagatggtatatttttttacataaagtaaaaggggtgcagtgaaaagtctctgtaaaaatatgttcctgtaaattttgagagtcaaactttcatcactatctgtagaatcctgccactaatgaatttccatttgttgaagattgaaactattgtctaaaggatcccacctctggagtggggaagcactgaacactacctcagcggaaagtctgaaattagactgtttttcttctaaaatgaccatgaaagttgtttcttgatatttaggttgcaagaattcagcaggataatgagcataaggaatcaactcttcgagcttatcataaagaagaactccagcgcatccaatctcaggctgagaatgaattgagggaggtcagtaataaattccaccagatgttttgatgatgattgttcatactaattaaatctggatcaaatatgcagagattgtcatcgctcagaaaggatcatgaaattcaaatgaaatcattgactaaaaagcatgaggaaaattgtcagaagcttcaggatgaactggagcttcagaagtcaaaggtagtcactctggtgatcttcttgttctggaaatcgttacttgaaaatatatctgaacacttttttttttcaggaggagaagcaaagagcattgttacagttacaatggaaagtaatgggcgaaacccaacaggttgatcaagaagtaaactctaagaaggtattctctgatttctatctcatatactatttttaagcaattcatatttaagttatgttatattaattgcatagcatgctaagcatttaatataaagatgcaagtgcatatgtttcactaattgaaatgctgctgcttatttcatgtaacaataaattcaagaaattgagtattttgacttggtttggcattaatttataaagccttgtggcttgtatttcgaatatgtaggtcaagacaattggttttttttccaggtttgacattttctaccacaaccattatttccttgtggattgttattaagaaaaattagatgaagattaggaatgagtcatttggttgatttgattggataaattaatggaaagtaaaggataagattcattttccatgctttttaattctttatttgatattgtcaatatattcctaaaccatacataatagagagattttaatccctatgtggtaattatgaaaacattctgttttaactttcgagttggctgttgatgcatgcaaaactttttaacataatcaagtttgttccttactctcatgtatatatatatatatatatatgactcctaactcagatatacatgactgtggggagtacttctaaaaaaactactattgtgtcaaatttctgtgcacttagttatcttttaacacatcacactttgctttccttttttattatgagcagaaatagtatttgtttcagactttatgttgtagattttgatgcgccattttggccttttatttttcattacaatcctattatttatttcatgccttgcaaactctgaacttgctgtgtttgcatataggttcctgtgtgtgcgatttggttcatctgtagaggtgctagttgcaaactagtgaaatactattgacttttttttttcacgatcttgaccatagatttgttcaacccctaagtcccagtatgacactttttgataagaataaatgaaagaaaaaacatttttcttcacctgtttggattataataccagatgttcatacatctcattcttgctagattttcccaaagagctccttaaacatatcttacaaattcaggtaaaaatggaaaatatctttaaaaatggttaccatgatttggtcacgtgctcatgttggggcagaaccagaaaggctgatatagtccatatcatgcattattttcagtttttgttaatcttataattggttctttgtaatttgtttcaccgtttacgttttgtatgtgccaatgctctccttaagagttaagacatacatattttatttttttaggaatactctgtttcatcaataaagaggagagatccatatatcagaaaagaacatcagcttcagttggttagtcctgagaccaaacggaaggtaagacatctctctttaaacgttgactttatcactgcatgcttcattgcacaaattctaaattcgcatgttctactaccaggatgttaatctatctggcattatacaatcaccaattacaaacatgctgagaaaggtagagaaaggaacccaggatattcctaagcatagaaaggtgaatcattttacatttagattcatcattctcttattagagaatgtatcaagtttcactaattgaatgaattaatctgtaaaatacatgttttcatgtgacatgttttcggtgtccttttaactaggtaacacatcatgaatatgaagttgagacagcaaatggaagaatcacaaagcgcaggaaaactaagagcaccgtcatgtttggggtacaggtttttcctctcttttttctcctttgcatttgattggtggtctagtatttcattcttgtaatcatgttaacagtagcctttttctcccattcaggaacccaacactcagaagtcattgcatgatactgctgacaaggatcctacaaaaatgaagaaggtatatttgtgtgattaaatgtgttcgccaacttctttccatatgcatgtctaaactactccctccgtttcataatgtaagtcattctagcattgcctatattcatatagatgttaatgaatctagacatagacatatatctagattcattaacatccatatgaatgtgagcattgctagaatgacttacattatgaaacggaggaagtagattcattgacctctgtaattttgttttttgtttttgggcatatagggatacttttatagaattgaaatattttctgtgtactatatcattttctgaattatgatctgtactatgtgatatattcaggaatgcctgttctcatagatgtttctgttgtaagaacatttgtagttgacttactactttgatggtacagcatacatttattagatagtgttgactcagttttattctctcgctaaatgactgaaaatttgtgattgctcatgtggtggaattcgatcagagtctatccgaaaacatgcatccagaatattggttttcccagatgcttttgctcaacttttgttaacatttacgcttcttcactctccaggttgttgctggatcccatccccaccctgcaaacattggtgaattgttttctgagggctcgttgaatccatatgccgaagatccttatgcatttggctag</dnaseqindica>

External Link(s)

NCBI Gene:Os04g0452500, RefSeq:Os04g0452500